Publications by authors named "Dhruv Chauhan"

The NLRP3 inflammasome plays a pivotal role in host defense and drives inflammation against microbial threats, crystals, and danger-associated molecular patterns (DAMPs). Dysregulation of NLRP3 activity is associated with various human diseases, making it an attractive therapeutic target. Patients with NLRP3 mutations suffer from Cryopyrin-Associated Periodic Syndrome (CAPS) emphasizing the clinical significance of modulating NLRP3.

View Article and Find Full Text PDF
Article Synopsis
  • NLRP3 is an important sensor for inflammation in cells and is a target for treating diseases caused by inflammation.* -
  • Recent research reveals how NLRP3 transforms from a closed structure to an active form, specifically through the formation of an open octamer that undergoes a significant hinge rotation.* -
  • The interaction with NEK7 is crucial, as it disrupts larger NLRP3 complexes and leads to the formation of smaller monomers/dimers, which is a key step in the assembly of the fully active inflammasome.*
View Article and Find Full Text PDF

The NLRP3 inflammasome plays a central role in antimicrobial defense as well as in the context of sterile inflammatory conditions. NLRP3 activity is governed by two independent signals: the first signal primes NLRP3, rendering it responsive to the second signal, which then triggers inflammasome formation. Our understanding of how NLRP3 priming contributes to inflammasome activation remains limited.

View Article and Find Full Text PDF

Neutrophils are the most prevalent immune cells in circulation, but the repertoire of canonical inflammasomes in neutrophils and their respective involvement in neutrophil IL-1β secretion and neutrophil cell death remain unclear. Here, we show that neutrophil-targeted expression of the disease-associated gain-of-function Nlrp3 mutant suffices for systemic autoinflammatory disease and tissue pathology in vivo. We confirm the activity of the canonical NLRP3 and NLRC4 inflammasomes in neutrophils, and further show that the NLRP1b, Pyrin and AIM2 inflammasomes also promote maturation and secretion of interleukin (IL)-1β in cultured bone marrow neutrophils.

View Article and Find Full Text PDF

Loss of lymphocytes, particularly T cell apoptosis, is a central pathological event after severe tissue injury that is associated with increased susceptibility for life-threatening infections. The precise immunological mechanisms leading to T cell death after acute injury are largely unknown. Here, we identified a monocyte-T cell interaction driving bystander cell death of T cells in ischemic stroke and burn injury.

View Article and Find Full Text PDF

Inflammasomes are macromolecular complexes formed in response to pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) that drive maturation of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18, and cleave gasdermin D (GSDMD) for induction of pyroptosis. Inflammasomes are highly important in protecting the host from various microbial pathogens and sterile insults. Inflammasome pathways are strictly regulated at both transcriptional and post-translational checkpoints.

View Article and Find Full Text PDF

The RNase Regnase-1 is a master RNA regulator in macrophages and T cells that degrades cellular and viral RNA upon NF-κB signaling. The roles of its family members, however, remain largely unknown. Here, we analyzed -deficient mice, which develop hypertrophic lymph nodes.

View Article and Find Full Text PDF

IL-1β is a cytokine of pivotal importance to the orchestration of inflammatory responses. Synthesized as an inactive pro-cytokine, IL-1β requires proteolytic maturation to gain biological activity. Here, we identify intrinsic apoptosis as a non-canonical trigger of IL-1β maturation.

View Article and Find Full Text PDF
Article Synopsis
  • A Natural Compound Library of myxobacterial metabolites was evaluated for their ability to activate IL-1β in murine macrophages, leading to the discovery of a new compound from Hyalangium minutum.
  • The compound, named hyaboron, has a complex structure characterized by a boron-containing macrodiolide core, with its stereochemistry determined through advanced analytical techniques.
  • Functional studies showed that hyaboron not only promotes IL-1β secretion via the NLRP3 inflammasome but also exhibits antibacterial and antiparasitic properties.
View Article and Find Full Text PDF

Detection of cytosolic DNA constitutes a central event in the context of numerous infectious and sterile inflammatory conditions. Recent studies have uncovered a bipartite mode of cytosolic DNA recognition, in which the cGAS-STING axis triggers antiviral immunity, whereas AIM2 triggers inflammasome activation. Here, we show that AIM2 is dispensable for DNA-mediated inflammasome activation in human myeloid cells.

View Article and Find Full Text PDF

Interleukin-1β (IL-1β) is a cytokine whose bioactivity is controlled by activation of the inflammasome. However, in response to lipopolysaccharide, human monocytes secrete IL-1β independently of classical inflammasome stimuli. Here, we report that this constituted a species-specific response that is not observed in the murine system.

View Article and Find Full Text PDF

Inflammasomes are high molecular weight protein complexes that assemble in the cytosol upon pathogen encounter. This results in caspase-1-dependent pro-inflammatory cytokine maturation, as well as a special type of cell death, known as pyroptosis. The Nlrp3 inflammasome plays a pivotal role in pathogen defense, but at the same time, its activity has also been implicated in many common sterile inflammatory conditions.

View Article and Find Full Text PDF

Intracellular recognition of non-self and also self-nucleic acids can result in the initiation of potent pro-inflammatory and antiviral cytokine responses. Most recently, cGAS was shown to be critical for the recognition of cytoplasmic dsDNA. Binding of dsDNA to cGAS results in the synthesis of cGAMP(2'-5'), which then binds to the endoplasmic reticulum resident protein STING.

View Article and Find Full Text PDF