Publications by authors named "Simon D Robinson"

Dynamic deuterium (H)-MRSI enables mapping of metabolic fluxes in vivo, but its sensitivity is hampered by the low H gyromagnetic ratio and H-labelled metabolite concentrations. Low-rank denoising can enhance MRSI sensitivity by separating signal from noise. Several methods have been proposed, but the optimal approach for dynamic H-MRSI remains unclear.

View Article and Find Full Text PDF

Objective: To compare clinical ratings and signal-to-noise ratio (SNR) measures of a commercially available Deep Learning-based MRI reconstruction method (T2) against conventional T2- turbo spin echo brain MRI (T2).

Materials And Methods: 100 consecutive patients with various neurological conditions underwent both T2 and T2 on a Siemens Vida 3 T scanner with a 64-channel head coil in the same examination. Acquisition times were 3.

View Article and Find Full Text PDF

Cerebrospinal fluid (CSF) flow is a key component of the brain's waste clearance system. However, our understanding of CSF flow in the human brain, particularly within the brain-wide subarachnoid space (SAS), is limited due to a lack of non-invasive tools for measuring slow flow. Here, we propose a CSF flowmetry technique using phase-contrast MRI combined with a slow-flow-sensitized acquisition.

View Article and Find Full Text PDF

Spin-lock (SL) pulses have been proposed to directly detect neuronal activity otherwise inaccessible through standard functional magnetic resonance imaging. However, the practical limits of this technique remain unexplored. Key challenges in SL-based detection include ultra-weak signal variations, sensitivity to magnetic field inhomogeneities, and potential contamination from blood oxygen level-dependent effects, all of which hinder the reliable isolation of neuronal signals.

View Article and Find Full Text PDF

Purpose: QSM provides insight into healthy brain aging and neuropathologies such as multiple sclerosis (MS), traumatic brain injuries, brain tumors, and neurodegenerative diseases. Phase data for QSM are usually acquired from 3D gradient-echo (3D GRE) scans with long acquisition times that are detrimental to patient comfort and susceptible to patient motion. This is particularly true for scans requiring whole-brain coverage and submillimeter resolutions.

View Article and Find Full Text PDF

Isolated REM sleep behavior disorder (iRBD) is an early stage of synucleinopathy with most patients progressing to Parkinson's disease (PD) or related conditions. Quantitative susceptibility mapping (QSM) in PD has identified pathological iron accumulation in the substantia nigra (SN) and variably also in basal ganglia and cortex. Analyzing whole-brain QSM across iRBD, PD, and healthy controls (HC) may help to ascertain the extent of neurodegeneration in prodromal synucleinopathy.

View Article and Find Full Text PDF

Magnetic resonance elastography (MRE) is a non-invasive method to quantify biomechanical properties of human tissues. It has potential in diagnosis and monitoring of kidney disease, if established in clinical practice. The interplay of flow and volume changes in renal vessels, tubule, urinary collection system and interstitium is complex, but physiological ranges of viscoelastic properties during fasting and hydration have never been investigated in all gross anatomical segments simultaneously.

View Article and Find Full Text PDF

This article provides recommendations for implementing QSM for clinical brain research. It is a consensus of the International Society of Magnetic Resonance in Medicine, Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain.

View Article and Find Full Text PDF

Purpose: Subject movement during the MR examination is inevitable and causes not only image artifacts but also deteriorates the homogeneity of the main magnetic field (B ), which is a prerequisite for high quality data. Thus, characterization of changes to B , for example induced by patient movement, is important for MR applications that are prone to B inhomogeneities.

Methods: We propose a deep learning based method to predict such changes within the brain from the change of the head position to facilitate retrospective or even real-time correction.

View Article and Find Full Text PDF

Quantitative Susceptibility Mapping has the potential to provide additional insights into neurological diseases but is typically based on a quite long (5-10 min) 3D gradient-echo scan which is highly sensitive to motion. We propose an ultra-fast acquisition based on three orthogonal (sagittal, coronal and axial) 2D simultaneous multi-slice EPI scans with 1 mm in-plane resolution and 3 mm thick slices. Images in each orientation are corrected for susceptibility-related distortions and co-registered with an iterative non-linear Minimum Deformation Averaging (Volgenmodel) approach to generate a high SNR, super-resolution data set with an isotropic resolution of close to 1 mm.

View Article and Find Full Text PDF

Background: Currently, two major magnetic resonance (MR) vendors provide commercial 7‑T scanners that are approved by the Food and Drug Administration (FDA) for clinical application. There is growing interest in ultrahigh-field MRI because of the improved clinical results in terms of morphological detail, as well as functional and metabolic imaging capabilities.

Materials And Methods: The 7‑T systems benefit from a higher signal-to-noise ratio, which scales supralinearly with field strength, a supralinear increase in the blood oxygenation level dependent (BOLD) contrast for functional MRI and susceptibility weighted imaging (SWI), and the chemical shift increases linearly with field strength with consequently higher spectral resolution.

View Article and Find Full Text PDF

The boundaries between tissues with different magnetic susceptibilities generate inhomogeneities in the main magnetic field which change over time due to motion, respiration and system instabilities. The dynamically changing field can be measured from the phase of the fMRI data and corrected. However, methods for doing so need multi-echo data, time-consuming reference scans and/or involve error-prone processing steps, such as phase unwrapping, which are difficult to implement robustly on the MRI host.

View Article and Find Full Text PDF

Background: Selecting the appropriate antithrombotic regimen for patients with atrial fibrillation (AF) who have undergone percutaneous coronary intervention (PCI) or have had medically managed acute coronary syndrome (ACS) remains complex. This multi-centre observational study evaluated patterns of antithrombotic therapies utilized among Canadian patients with AF post-PCI or ACS.

Methods And Results: By retrospective chart audit, 611 non-valvular AF patients [median (interquartile range) age 76 (69-83) years, CHADS score 2 (1-3)] who underwent PCI or had medically managed ACS between August 2018 and December 2020 were identified by 68 cardiologists across eight provinces in Canada.

View Article and Find Full Text PDF

Of the sources of noise affecting blood oxygen level-dependent functional magnetic resonance imaging (fMRI), respiration and cardiac fluctuations are responsible for the largest part of the variance, particularly at high and ultrahigh field. Existing approaches to removing physiological noise either use external recordings, which can be unwieldy and unreliable, or attempt to identify physiological noise from the magnitude fMRI data. Data-driven approaches are limited by sensitivity, temporal aliasing, and the need for user interaction.

View Article and Find Full Text PDF

The pial arterial vasculature of the human brain is the only blood supply to the neocortex, but quantitative data on the morphology and topology of these mesoscopic arteries (diameter 50-300 µm) remains scarce. Because it is commonly assumed that blood flow velocities in these vessels are prohibitively slow, non-invasive time-of-flight magnetic resonance angiography (TOF-MRA)-which is well suited to high 3D imaging resolutions-has not been applied to imaging the pial arteries. Here, we provide a theoretical framework that outlines how TOF-MRA can visualize small pial arteries in vivo, by employing extremely small voxels at the size of individual vessels.

View Article and Find Full Text PDF

Background: Diabetes mellitus (DM) is an important predictor of neointimal hyperplasia (NIH) and adverse clinical outcomes after percutaneous coronary intervention (PCI). LABR-312, a novel intravenous formulation of liposomal alendronate, has been shown in animal models to decrease NIH at vascular injury sites and around stent struts. The aim of the Biorest Liposomal Alendronate Administration for Diabetic Patients Undergoing Drug-Eluting Stent Percutaneous Coronary Intervention trial was to assess the safety, effectiveness, and dose response of LABR-312 administered intravenously at the time of PCI withDES in reducing NIH as measured by optical coherence tomography postprocedure in patients with DM.

View Article and Find Full Text PDF

Background: Renal disease confers a strong independent risk for morbidity and mortality after percutaneous coronary intervention (PCI). We evaluated the relationship between baseline pre-procedural renal function and outcomes following PCI.

Methods: We examined 45,287 patients who underwent PCI in British Columbia.

View Article and Find Full Text PDF

Purpose: To address the challenges posed by fat-water chemical shift artifacts and relaxation rate discrepancies to quantitative susceptibility mapping (QSM) outside the brain, and to generate accurate susceptibility maps of the head-and-neck at 3 and 7 Tesla.

Methods: Simultaneous Multiple Resonance Frequency (SMURF) imaging was extended to 7 Tesla and used to acquire head-and-neck gradient echo images at both 3 and 7 Tesla. Separated fat and water images were corrected for Type 1 (displacement) and Type 2 (phase discrepancy) chemical shift artefacts, and for the bias resulting from differences in T and relaxation rates, recombined and used as the basis for QSM.

View Article and Find Full Text PDF

Fat fraction quantification and assessment of its distribution in the hepatic tissue become more important with the growing epidemic of obesity, and the increasing prevalence of diabetes mellitus type 2 and non-alcoholic fatty liver disease. At 3Tesla, the multi-echo, chemical-shift-encoded magnetic resonance imaging (CSE-MRI)-based acquisition allows the measurement of proton density fat-fraction (PDFF) even in clinical protocols. Further improvements in SNR can be achieved by the use of phased array coils and increased static magnetic field.

View Article and Find Full Text PDF

Purpose: Quantitative susceptibility mapping (QSM) estimates the spatial distribution of tissue magnetic susceptibilities from the phase of a gradient-echo signal. QSM algorithms require a signal mask to delineate regions with reliable phase for subsequent susceptibility estimation. Existing masking techniques used in QSM have limitations that introduce artifacts, exclude anatomical detail, and rely on parameter tuning and anatomical priors that narrow their application.

View Article and Find Full Text PDF

Purpose: Susceptibility Weighted Imaging (SWI) has become established in the clinical investigation of stroke, microbleeds, tumor vascularization, calcification and iron deposition, but suffers from a number of shortcomings and artefacts. The goal of this study was to reduce the sensitivity of SWI to strong B and B inhomogeneities at ultra-high field to generate homogeneous images with increased contrast and free of common artefacts. All steps in SWI processing have been addressed - coil combination, phase unwrapping, image combination over echoes, phase filtering and homogeneity correction - and applied to an efficient bipolar multi-echo acquisition to substantially improve the quality of SWI.

View Article and Find Full Text PDF

Background: More than half of patients undergoing percutaneous coronary intervention (PCI) have multivessel disease (MVD). The prognostic significance of PCI in stable patients has recently been debated, but little data exists about the potential benefit of complete revascularization (CR) in stable MVD. We investigated the prognostic benefit of CR in patients undergoing PCI for stable disease.

View Article and Find Full Text PDF

Purpose: To develop a rapid and accurate MRI phase-unwrapping technique for challenging phase topographies encountered at high magnetic fields, around metal implants, or postoperative cavities, which is sufficiently fast to be applied to large-group studies including Quantitative Susceptibility Mapping and functional MRI (with phase-based distortion correction).

Methods: The proposed path-following phase-unwrapping algorithm, ROMEO, estimates the coherence of the signal both in space-using MRI magnitude and phase information-and over time, assuming approximately linear temporal phase evolution. This information is combined to form a quality map that guides the unwrapping along a 3D path through the object using a computationally efficient minimum spanning tree algorithm.

View Article and Find Full Text PDF