98%
921
2 minutes
20
This article provides recommendations for implementing QSM for clinical brain research. It is a consensus of the International Society of Magnetic Resonance in Medicine, Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available have generated a need in the neuroimaging community for guidelines on implementation. This article outlines considerations and implementation recommendations for QSM data acquisition, processing, analysis, and publication. We recommend that data be acquired using a monopolar 3D multi-echo gradient echo (GRE) sequence and that phase images be saved and exported in Digital Imaging and Communications in Medicine (DICOM) format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background field removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields within the brain mask should be removed using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of the whole brain as a region of interest in the analysis. The minimum acquisition and processing details required when reporting QSM results are also provided. These recommendations should facilitate clinical QSM research and promote harmonized data acquisition, analysis, and reporting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10950544 | PMC |
http://dx.doi.org/10.1002/mrm.30006 | DOI Listing |
J Crit Care
September 2025
Neuro-Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China; Neuro-intensive Care Unit, Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China. Electronic address:
J Crit Care
September 2025
Neuro-Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China; Neuro-intensive Care Unit, Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China. Electronic address:
Neuro Endocrinol Lett
September 2025
Department of Neurosurgery, PLA 960th Hospital, Jinan, Shandong, 250031, China.
Objective: To analyze the hotspots and frontiers in the field of subarachnoid hemorrhage using the bibliometrics method and providing references for academic research.
Methods: All published studies related to subarachnoid hemorrhage published in the Web of Science core database from 1 January 2016 to 25 September 2021 were retrospectively identified using VOSviewer and CiteSpace software. Visualization VOSviewer and CiteSpace software were used to perform statistical and cluster analyses on authors, countries, institutions, keywords, and co-cited documents.
Ann Am Thorac Soc
September 2025
Brigham and Women's Hospital, Division of Sleep and Circadian Disorders, Boston, Massachusetts, United States.
Rationale: There are insufficient data to inform the management of central sleep apnea (CSA) in patients with heart failure (HF) with reduced ejection fraction (HFrEF). Nocturnal oxygen therapy (NOT) has been postulated to benefit CSA patients with HFrEF, but has not been rigorously studied. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.
View Article and Find Full Text PDFNeurology
October 2025
Department of Radiology, Mayo Clinic, Rochester, MN.
Background And Objectives: The relationship between insomnia and cognitive decline is poorly understood. We investigated associations between chronic insomnia, longitudinal cognitive outcomes, and brain health in older adults.
Methods: From the population-based Mayo Clinic Study of Aging, we identified cognitively unimpaired older adults with or without a diagnosis of chronic insomnia who underwent annual neuropsychological assessments (z-scored global cognitive scores and cognitive status) and had quantified serial imaging outcomes (amyloid-PET burden [centiloid] and white matter hyperintensities from MRI [WMH, % of intracranial volume]).