98%
921
2 minutes
20
Purpose: Quantitative susceptibility mapping (QSM) estimates the spatial distribution of tissue magnetic susceptibilities from the phase of a gradient-echo signal. QSM algorithms require a signal mask to delineate regions with reliable phase for subsequent susceptibility estimation. Existing masking techniques used in QSM have limitations that introduce artifacts, exclude anatomical detail, and rely on parameter tuning and anatomical priors that narrow their application. Here, a robust masking and reconstruction procedure is presented to overcome these limitations and enable automated QSM processing. Moreover, this method is integrated within an open-source software framework: QSMxT.
Methods: A robust masking technique that automatically separates reliable from less reliable phase regions was developed and combined with a two-pass reconstruction procedure that operates on the separated sources before combination, extracting more information and suppressing streaking artifacts.
Results: Compared with standard masking and reconstruction procedures, the two-pass inversion reduces streaking artifacts caused by unreliable phase and high dynamic ranges of susceptibility sources. It is also robust across a range of acquisitions at 3 T in volunteers and phantoms, at 7 T in tumor patients, and in an in silico head phantom, with significant artifact and error reductions, greater anatomical detail, and minimal parameter tuning.
Conclusion: The two-pass masking and reconstruction procedure separates reliable from less reliable phase regions, enabling a more accurate QSM reconstruction that mitigates artifacts, operates without anatomical priors, and requires minimal parameter tuning. The technique and its integration within QSMxT makes QSM processing more accessible and robust to streaking artifacts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612305 | PMC |
http://dx.doi.org/10.1002/mrm.29048 | DOI Listing |
IEEE Trans Pattern Anal Mach Intell
September 2025
Camouflaged Object Segmentation (COS) faces significant challenges due to the scarcity of annotated data, where meticulous pixel-level annotation is both labor-intensive and costly, primarily due to the intricate object-background boundaries. Addressing the core question, "Can COS be effectively achieved in a zero-shot manner without manual annotations for any camouflaged object?", we propose an affirmative solution. We analyze the learned attention patterns for camouflaged objects and introduce a robust zero-shot COS framework.
View Article and Find Full Text PDFIEEE Trans Cybern
September 2025
Sleep is essential for maintaining human health and quality of life. Analyzing physiological signals during sleep is critical in assessing sleep quality and diagnosing sleep disorders. However, manual diagnoses by clinicians are time-intensive and subjective.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
September 2025
Department of Ophthalmology, People's Hospital of Feng Jie, Chongqing, 404600, China. Electronic address:
Objective: This study aims to develop a robust, multi-task deep learning framework that integrates vessel segmentation and radiomic analysis for the automated classification of four retinal conditions- diabetic retinopathy (DR), hypertensive retinopathy (HR), papilledema, and normal fundus-using fundus images.
Materials: AND.
Methods: A total of 2,165 patients from eight medical centers were enrolled.
IEEE J Biomed Health Inform
September 2025
Early diagnosis of Parkinson's disease (PD) is crucial for timely treatment and disease management. Recent studies link PD to impaired facial muscle control, manifesting as "masked face" symptoms, offering a novel diagnostic approach through facial expression analysis. However, data privacy concerns and legal restrictions have resulted in significant "data silos", hindering data sharing and limiting the accuracy and generalizability of existing diagnostic models due to small, localized datasets.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
September 2025
Accurate early prediction of epileptic seizures is crucial for improving patients' quality of life. However, existing seizure prediction methods often rely on large-scale labeled datasets and face challenges in generalization and real-time performance. To address these issues, this study proposes an efficient seizure prediction framework that achieves high performance even with limited labeled data, significantly reducing dependence on extensive annotations.
View Article and Find Full Text PDF