Publications by authors named "Shuyan Deng"

Objectives: This study aims to evaluate the potential advantages of targeted next-generation sequencing (tNGS) over conventional bacterial culture methods for pathogen detection in hospital-associated infections (HAIs).

Methods: All EICU medical staff and all medical staff from the Physical Examination Centre completed a questionnaire. Nasopharyngeal specimens were collected from medical staff who met all of the inclusion criteria and none of the exclusion criteria.

View Article and Find Full Text PDF

To guarantee the transporting efficiency of microdevices associated with fluid transportation, mixing, or separation and to promote the heat transfer performance of heat exchangers in microelectronics, the hydrodynamic behaviors at unsteady and steady states, as well as the thermal characteristics at the steady state in a pressure-driven electrokinetic slip flow of power-law fluid in a microannulus are studied. To present a more reliable prediction, the slip phenomenon at walls and nonlinear rheology of liquid are incorporated. The modified Cauchy momentum equation applicable to all time scales and energy equations, are analytically solved in the limiting case of a Newtonian fluid and numerically solved for power-law fluids.

View Article and Find Full Text PDF

To achieve the optimum use and efficient thermal management of two-layer electroosmosis pumping systems in microdevices, this paper studies the transient hydrodynamical features in two-layer electroosmotic flow of power-law nanofluids in a slit microchannel and the corresponding heat transfer characteristics in the presence of viscous dissipation. The governing equations are established based on the Cauchy momentum equation, continuity equation, energy equation, and power-law nanofluid model, which are analytically solved in the limiting case of two-layer Newtonian fluid flow by means of Laplace transform and numerically solved for two-layer power-law nanofluid fluid flow. The transient mechanism of adopting conducting power-law nanofluid as a pumping force and that of pumping nonconducting power-law nanofluid are both discussed by presenting the two-layer velocity, flow rates, temperature, and Nusselt number at different power-law rheology, nanoparticle volume fraction, electrokinetic width and Brinkman number.

View Article and Find Full Text PDF

To help in the efficient design of fluid flow in electroosmotic pumps, electroosmotic flow of non-Newtonian fluid through porous polymer membrane at high zeta potentials is studied by mainly evaluating the total flow rate at different physical parameters. Non-Newtonian fluid is represented by the power-law model and the porous polymer membrane is considered as arrays of straight cylindrical pores. The electroosmotic flow of non-Newtonian fluid through a single pore is studied by solving the complete Poisson-Boltzmann equation and the modified Cauchy momentum equation.

View Article and Find Full Text PDF

The non-Newtonian nanofluid flow becomes increasingly important in enhancing the thermal management efficiency of microscale devices and in promoting the exploration of the thermal-electric energy conversion process. The effect of streaming potential and viscous dissipation in the heat transfer characteristics of power-law nanofluid electrokinetic flow in a rectangular microchannel has been investigated to assist in the development of an energy harvesting system. The electroviscous effect caused by the streaming potential influences the hydrodynamical and thermal characteristics of flow.

View Article and Find Full Text PDF

The hydrodynamic and thermal behavior of the electroosmotic flow of power-law nanofluid is studied. A modified Cauchy momentum equation governing the hydrodynamic behavior of power-law nanofluid flow in a rectangular microchannel is firstly developed. To explore the thermal behavior of power-law nanofluid flow, the energy equation is developed, which is coupled to the velocity field.

View Article and Find Full Text PDF

Theoretical treatment of the Richtmyer-Meshkov instability in compressible fluids is a challenging task due to the presence of compressibility and nonlinearity. In this Letter, we present a quantitative theory for the growth rate and the amplitude of fingers in Richtmyer-Meshkov instability for compressible fluids based on the methods of the two-point Padé approximation and asymptotic matching. Our theory covers the entire time domain from early to late times and is applicable to systems with arbitrary fluid density ratios.

View Article and Find Full Text PDF

Due to the increasingly wide application of electroosmotic flow in micromachines, this paper investigates the electroosmotic flow of the power-law fluid under high zeta potential in a cylindrical microcapillary for different dimensionless parameters. The electric potential distribution inside a cylindrical microcapillary is presented by the complete Poisson-Boltzmann equation applicable to an arbitrary zeta potential. By solving the Cauchy momentum equation of power-law fluids, the velocity profile, the volumetric flow rate, the average velocity, the shear stress distribution and dynamic viscosity of electroosmotic flow of power-law fluids in a cylindrical microcapillary are studied for different low/high zeta potential, flow behavior index, dimensionless electrokinetic width.

View Article and Find Full Text PDF

Organophosphorus insecticides have been widely used, which are highly poisonous and cause serious concerns over food safety and environmental pollution. A bacterial strain being capable of degrading O,O-dialkyl phosphorothioate and O,O-dialkyl phosphate insecticides, designated as G1, was isolated from sludge collected at the drain outlet of a chlorpyrifos manufacture plant. Physiological and biochemical characteristics and 16S rDNA gene sequence analysis suggested that strain G1 belongs to the genus Stenotrophomonas.

View Article and Find Full Text PDF