Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Theoretical treatment of the Richtmyer-Meshkov instability in compressible fluids is a challenging task due to the presence of compressibility and nonlinearity. In this Letter, we present a quantitative theory for the growth rate and the amplitude of fingers in Richtmyer-Meshkov instability for compressible fluids based on the methods of the two-point Padé approximation and asymptotic matching. Our theory covers the entire time domain from early to late times and is applicable to systems with arbitrary fluid density ratios. The theoretical predictions are in good agreement with data from several independent numerical simulation methods and experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.121.174502 | DOI Listing |