Fusarium head blight (FHB) is a destructive disease which adversely affects the yield of wheat. The occurrence and epidemic of wheat FHB are closely related to meteorological information. Firstly, by analyzing eight meteorological factors-rainfall (RAIN), average sunshine hours (ASH), average wind speed (AWS), average temperature (AT), highest temperature (HT), lowest temperature (LT), average relative humidity (ARH), and maximum temperature difference (MTD)-specific periods closely related to wheat FHB severity are identified.
View Article and Find Full Text PDFPeerJ Comput Sci
June 2025
With the proliferation of social media, cyberbullying has emerged as a pervasive threat, causing significant psychological harm to individuals and undermining social cohesion. Its linguistic expressions vary widely across topics, complicating automatic detection efforts. Most existing methods struggle to generalize across diverse online contexts due to their reliance on topic-specific features.
View Article and Find Full Text PDFThe verified text data of wheat varieties is an important component of wheat germplasm information. To automatically obtain a structured description of the phenotypic and genetic characteristics of wheat varieties, the aim at solve the issues of fuzzy entity boundaries and overlapping relationships in unstructured wheat variety approval data, WGIE-DCWF (joint extraction model of wheat germplasm information entity relationship based on deep character and word fusion) was proposed. The encoding layer of the model deeply fused word semantic information and character information using the Transformer encoder of BERT.
View Article and Find Full Text PDFIn light of the significance of regulatory authorities and the rising demand for information disclosure, a vast amount of information on food safety news reports is readily accessible on the Internet. The extraction of such information for precise classification and provision of appropriate safety alerts based on their respective categories has emerged as a challenging problem for academic research. Given that most food safety-related events in news reports comprise lengthy text, the pre-trained language models currently employed for text analysis are generally limited in their capability to handle long documents.
View Article and Find Full Text PDFThe chromosome instability (CIN) is one of the hallmarks of cancer and is closely related to tumor metastasis. However, the sheer size and resolution of histopathology whole-slide images (WSIs) already challenges the capabilities of computational pathology. In this study, we propose a correlation graph attention network (MLP-GAT) that can construct graphs for classifying multi-type CINs from the WSIs of breast cancer.
View Article and Find Full Text PDFAffective understanding of language is an important research focus in artificial intelligence. The large-scale annotated datasets of Chinese textual affective structure (CTAS) are the foundation for subsequent higher-level analysis of documents. However, there are very few published datasets for CTAS.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
July 2023
Segmenting stroke lesions and assessing the thrombolysis in cerebral infarction (TICI) grade are two important but challenging prerequisites for an auxiliary diagnosis of the stroke. However, most previous studies have focused only on a single one of two tasks, without considering the relation between them. In our study, we propose a simulated quantum mechanics-based joint learning network (SQMLP-net) that simultaneously segments a stroke lesion and assesses the TICI grade.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
July 2023
Identifying the subtypes of low-grade glioma (LGG) can help prevent brain tumor progression and patient death. However, the complicated non-linear relationship and high dimensionality of 3D brain MRI limit the performance of machine learning methods. Therefore, it is important to develop a classification method that can overcome these limitations.
View Article and Find Full Text PDFComput Intell Neurosci
August 2022
Personal medication intake detection aims to automatically detect tweets that show clear evidence of personal medication consumption. It is a research topic that has attracted considerable attention to drug safety surveillance. This task is inevitably dependent on medical domain information, and the current main model for this task does not explicitly consider domain information.
View Article and Find Full Text PDFMed Image Anal
October 2022
It has been proven that neuropsychiatric disorders (NDs) can be associated with both structures and functions of brain regions. Thus, data about structures and functions could be usefully combined in a comprehensive analysis. While brain structural MRI (sMRI) images contain anatomic and morphological information about NDs, functional MRI (fMRI) images carry complementary information.
View Article and Find Full Text PDFFront Neuroinform
December 2021
Convolutional neural networks (CNNs) have brought hope for the medical image auxiliary diagnosis. However, the shortfall of labeled medical image data is the bottleneck that limits the performance improvement of supervised CNN methods. In addition, annotating a large number of labeled medical image data is often expensive and time-consuming.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
December 2021
Background: Named entity recognition (NER) on Chinese electronic medical/healthcare records has attracted significantly attentions as it can be applied to building applications to understand these records. Most previous methods have been purely data-driven, requiring high-quality and large-scale labeled medical data. However, labeled data is expensive to obtain, and these data-driven methods are difficult to handle rare and unseen entities.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
July 2020
Background: Blood cultures are often performed to detect patients who has a serious illness without infections and patients with bloodstream infections. Early positive blood culture prediction is important, as bloodstream infections may cause inflammation of the body, even organ failure or death. However, existing work mainly adopts statistical models with laboratory indicators, and fails to make full use of textual description information from EHRs.
View Article and Find Full Text PDFBioinformatics
August 2017
Motivation: Disease named entities play a central role in many areas of biomedical research, and automatic recognition and normalization of such entities have received increasing attention in biomedical research communities. Existing methods typically used pipeline models with two independent phases: (i) a disease named entity recognition (DER) system is used to find the boundaries of mentions in text and (ii) a disease named entity normalization (DEN) system is used to connect the mentions recognized to concepts in a controlled vocabulary. The main problems of such models are: (i) there is error propagation from DER to DEN and (ii) DEN is useful for DER, but pipeline models cannot utilize this.
View Article and Find Full Text PDF