Microalgae in the wild often form consortia with other species promoting their own health and resource foraging opportunities. The recent application of microalgae cultivation and deployment in commercial photobioreactors (PBR) so far has focussed on single species of algae, resulting in multi-species consortia being largely unexplored. Reviewing the current status of PBR ecological habitat, this article argues in favor of further investigation into algal communication with conspecifics and interspecifics, including other strains of microalgae and bacteria.
View Article and Find Full Text PDFInvestigations carried out on maize roots under microgravity and hypergravity revealed that gravity conditions have strong effects on the network of plant electrical activity. Both the duration of action potentials (APs) and their propagation velocities were significantly affected by gravity. Similarly to what was reported for animals, increased gravity forces speed-up APs and enhance synchronized electrical events also in plants.
View Article and Find Full Text PDFOxygen influx showed an asymmetry in the transition zone of the root apex when roots were placed horizontally on ground. The influx increased only in the upper side, while no changes were detected in the division and in the elongation zone. Nitric oxide (NO) was also monitored after gravistimulation, revealing a sudden burst only in the transition zone.
View Article and Find Full Text PDFVenus flytrap (Dionaea muscipula Ellis) is a carnivorous plant known for its ability to capture insects thanks to the fast snapping of its traps. This fast movement has been long studied and it is triggered by the mechanical stimulation of hairs, located in the middle of the leaves. Here we present detailed experiments on the effect of microgravity on trap closure recorded for the first time during a parabolic flight campaign.
View Article and Find Full Text PDFPlant Cell Physiol
May 2012
Roots are very sensitive to hypoxia and adapt effectively to a reduced availability of oxygen in the soil. However, the site of the root where oxygen availability is sensed and how roots acclimate to hypoxia remain unclear. In this study, we found that the root apex transition zone plays central roles in both sensing and adapting to root hypoxia.
View Article and Find Full Text PDFThe effect of a hypoxic pre-treatment (HPT) on improving tolerance to prolonged anoxia conditions in two contrasting Vitis species (V. riparia, anoxia tolerant; V. rupestris, anoxia sensitive) was evaluated.
View Article and Find Full Text PDFOur vision of plants is changing dramatically: from insensitive and static objects to complex living beings able to sense the environment and to use the information collected to adapt their behaviour. At all times humans imitate ideas and concepts from nature to resolve technological problems. Solutions coming from plants have the potential to face challenges and difficulties of modern engineering design.
View Article and Find Full Text PDFAuxin (IAA) is versatile signalling molecule of plants, currently classified as plant hormone. But there are data suggesting that auxin is acting also as plant-specific morphogen, electric-responses inducing transmitter, and as general signalling molecule used for plant-bacteria communication. Our previous data revealed that auxin is associated with secretory endosomes and also highly enriched within cell walls of cells active in transcellular auxin transport.
View Article and Find Full Text PDF