() represents one of the most prevalent opportunistic fungal pathogens in cancer patients. Although the association between and cancer has been recognized for decades, the causal relationship, whether infection is a consequence of cancer or a direct contributor to cancer development-remains a subject of intensive investigation. Recently, the complex interplay between microbes and cancer has garnered significant attention within the scientific community, with growing interest in elucidating the underlying molecular mechanisms.
View Article and Find Full Text PDFBackground: Emerging evidence implicates () in human oncogenesis. Notably, studies have supported its involvement in regulating outcomes in colorectal cancer (CRC). This study investigated the paradoxical role of in CRC, aiming to determine whether it promotes or suppresses tumor development, with a focus on the mechanistic basis linked to its metabolic profile.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
May 2025
Mitochondria maintain bacterial traits because of their endosymbiotic origins, yet the host cell recognizes them as non-threatening since the organelles are compartmentalized. Nevertheless, the controlled release of mitochondrial components into the cytoplasm can initiate cell death, activate innate immunity, and provoke inflammation. This selective interruption of endosymbiosis as early as 2 billion years ago allowed mitochondria to become intracellular signaling hubs.
View Article and Find Full Text PDFBackground: Cell death mechanisms are integral to the pathogenesis of breast cancer (BC), with ATP-induced cell death (AICD) attracting increasing attention due to its distinctive specificity and potential therapeutic applications.
Methods: This study employed genomic methodologies to investigate the correlation between drug sensitivity and types of AICD in BC. Initially, data from TCGA were utilized to construct a prognostic model and classification system for AICD.
Introduction: Over the past decades, immune dysregulation has been consistently demonstrated being common charactoristics of endometriosis (EM) and Inflammatory Bowel Disease (IBD) in numerous studies. However, the underlying pathological mechanisms remain unknown. In this study, bioinformatics techniques were used to screen large-scale gene expression data for plausible correlations at the molecular level in order to identify common pathogenic pathways between EM and IBD.
View Article and Find Full Text PDFWorld J Clin Oncol
February 2024
Background: Breast cancer is a multifaceted and formidable disease with profound public health implications. Cell demise mechanisms play a pivotal role in breast cancer pathogenesis, with ATP-triggered cell death attracting mounting interest for its unique specificity and potential therapeutic pertinence.
Aim: To investigate the impact of ATP-induced cell death (AICD) on breast cancer, enhancing our understanding of its mechanism.
World J Clin Oncol
December 2023
Adenosine triphosphate ATP) induced cell death (AICD) is a critical cellular process that has garnered substantial scientific interest for its profound relevance to cancer biology and to therapeutic interventions. This comprehensive review unveils the intricate web of AICD mechanisms and their intricate connections with cancer biology. This review offers a comprehensive framework for comprehending the multifaceted role of AICD in the context of cancer.
View Article and Find Full Text PDFATP-induced cell death has emerged as a captivating realm of inquiry with profound ramifications in the context of osteoporosis. This study unveils a paradigm-shifting hypothesis that illuminates the prospective involvement of ATP-induced cellular demise in the etiology of osteoporosis. Initially, we explicate the morphological attributes of ATP-induced cell death and delve into the intricacies of the molecular machinery and regulatory networks governing ATP homeostasis and ATP-induced cell death.
View Article and Find Full Text PDFEndometriosis (EM) is a common gynecological condition in women of reproductive age, with diverse causes and a not yet fully understood pathogenesis. Traditional diagnostics rely on single diagnostic biomarkers and does not integrate a variety of different biomarkers. This study introduces multiple machine learning techniques, enhancing the accuracy of predictive models.
View Article and Find Full Text PDFLife (Basel)
January 2023
The fruits, leaves, and bark of the guava () tree have traditionally been used to treat a myriad of ailments, especially in the tropical and subtropical regions. The various parts of the plant have been shown to exhibit medicinal properties, such as antimicrobial, antioxidant, anti-inflammatory, and antidiabetic activities. Recent studies have shown that the bioactive phytochemicals of several parts of the plant exhibit anticancer activity.
View Article and Find Full Text PDFThe fungal toxin aflatoxin B1 (AB1) and its reactive intermediate, aflatoxin B1-8, 9 epoxide, could cause liver cancer by inducing DNA adducts. AB1 exposure can induce changes in the expression of several cancer-related genes. In this study, the effect of AB1 exposure on breast cancer MCF7 and normal breast MCF10A cell lines at the phenotypic and epigenetic levels was investigated to evaluate its potential in increasing the risk of breast cancer development.
View Article and Find Full Text PDFInt J Mol Sci
September 2021
Beta-Caryophyllene (BCP), a naturally occurring sesquiterpene abundantly found in cloves, hops, and cannabis, is the active candidate of a relatively new group of vascular-inhibiting compounds that aim to block existing tumor blood vessels. Previously, we have reported the anti-cancer properties of BCP by utilizing a series of in-vitro anti-tumor-related assays using human colorectal carcinoma cells. The present study aimed to investigate the effects of BCP on in-vitro, ex-vivo, and in-vivo models of anti-angiogenic assays and evaluate its anti-cancer activity in xenograft tumor (both ectopic and orthotopic) mice models of human colorectal cancer.
View Article and Find Full Text PDFMycopathologia
May 2021
Candida albicans has been reported globally as the most widespread pathogenic species contributing candidiasis from superficial to systemic infections in immunocompromised individuals. Their metabolic adaptation depends on glyoxylate cycle to survive in nutrient-limited host. The long term usage of fungistatic drugs and the lack of cidal drugs frequently result in strains that could resist commonly used antifungals and display multidrug resistance (MDR).
View Article and Find Full Text PDFBackground: Emergence of Candida glabrata, which causes potential life-threatening invasive candidiasis, has been widely associated with high morbidity and mortality. In order to cause disease in vivo, a robust and highly efficient metabolic adaptation is crucial for the survival of this fungal pathogen in human host. In fact, reprogramming of the carbon metabolism is believed to be indispensable for phagocytosed C.
View Article and Find Full Text PDFCandida albicans is a commensal yeast commonly found on the skin and in the body. However, in immunocompromised individuals, the fungi could cause local and systemic infections. The carbon source available plays an important role in the establishment of C.
View Article and Find Full Text PDF: Silver nanoparticles (AgNPs) are widely used in food industries, biomedical, dentistry, catalysis, diagnostic biological probes and sensors. The use of plant extract for AgNPs synthesis eliminates the process of maintaining cell culture and the process could be scaled up under a non-aseptic environment. The purpose of this study is to determine the classes of phytochemicals, to biosynthesize and characterize the AgNPs using leaf and stem extracts.
View Article and Find Full Text PDFFlexibility in carbon metabolism is pivotal for the survival and propagation of many human fungal pathogens within host niches. Indeed, flexible carbon assimilation enhances pathogenicity and affects the immunogenicity of . Over the last decade, has emerged as one of the most common and problematic causes of invasive candidiasis.
View Article and Find Full Text PDFThe human fungal pathogen Candida glabrata appears to utilise unique stealth, evasion and persistence strategies in subverting the onslaught of host immune response during systemic infection. However, macrophages actively deprive the intracellular fungal pathogen of glucose, and therefore alternative carbon sources probably support the growth and survival of engulfed C. glabrata.
View Article and Find Full Text PDFBackground: A norovirus maintains its viability, infectivity and virulence by its ability to replicate. However, the biological mechanisms of the process remain to be explored. In this work, the NanoLuc™ Luciferase gene was used to develop a reporter-tagged replicon system to study norovirus replication.
View Article and Find Full Text PDFBackground: Green synthesis of silver nanoparticles (AgNPs) has become widely practiced worldwide. In this study, AgNPs were synthesized using a hot-water extract of the edible mushroom Pleurotus sajor-caju. The product, PSC-AgNPs, was characterized by using UV-visible spectra, dynamic light scattering analysis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectrometry.
View Article and Find Full Text PDFThe chemical nature of most of the mycotoxins makes them highly liposoluble compounds that can be absorbed from the site of exposure such as from the gastrointestinal and respiratory tract to the blood stream where it can be dissimilated throughout the body and reach different organs such as the liver and kidneys. Mycotoxins have a strong tendency and ability to penetrate the human and animal cells and reach the cellular genome where it causes a major mutagenic change in the nucleotide sequence which leads to strong and permanent defects in the genome. This defect will eventually be transcribed, translated and lead to the development of cancer.
View Article and Find Full Text PDFBackground: is a commensal fungus that resides on mucosal surfaces and in the gastrointestinal and genitourinary tracts in humans. However, it can cause an infection when the immune system of the host is impaired or if a niche becomes available. Many infections are due to the organism's ability to form a biofilm on implanted medical devices.
View Article and Find Full Text PDFBackground: Orthosiphon stamineus is used traditionally to treat gout, arthritis, and inflammatory related conditions. The in vitro anti-inflammatory effects of the plant have been scientifically investigated. The goal of the present study was to evaluate the potential of the 50% ethanol extract of O.
View Article and Find Full Text PDFJundishapur J Microbiol
September 2016
Background: A major characteristic of biofilm cells that differentiates them from free-floating cells is their high tolerance to antifungal drugs. This high resistance is attributed to particular biofilm properties, including the accumulation of extrapolymeric substances, morphogenetic switching, and metabolic flexibility.
Objectives: This study evaluated the roles of metabolic processes (in particular the glyoxylate cycle) on biofilm formation, antifungal drug resistance, morphology, and cell wall components.
Malays J Med Sci
January 2016
Background: Vaginal yeast infection refers to irritation of the vagina due to the presence of opportunistic yeast of the genus Candida (mostly Candida albicans). About 75% of women will have at least one episode of vaginal yeast infection during their lifetime. Several studies have shown that pregnancy and uncontrolled diabetes increase the infection risk.
View Article and Find Full Text PDF