Publications by authors named "Rob Ameloot"

Grazing-incidence X-ray diffraction (GIXD) is widely used for the structural characterization of thin films, particularly for analyzing phase composition and the orientation distribution of crystallites. While various tools exist for qualitative evaluation, a widely applicable systematic procedure to obtain quantitative information has not yet been developed. This work presents a first step in that direction, allowing accurate quantitative information to be obtained through the evaluation of radial line profiles from GIXD data.

View Article and Find Full Text PDF

Efficient and scalable fabrication of metal-organic frameworks (MOFs) as thin films is a key step toward their commercial applications. However, it remains challenging to process most MOFs into films due to their chemical and physical properties. Here, we report a cation coordination-regulated strategy for the rapid and continuous electrochemical synthesis of high-quality zeolitic imidazolate framework (ZIF) films with a tunable thickness.

View Article and Find Full Text PDF

This paper explored the practical utility of gas sensing applications based on the multi-degree-of-freedom (Multi-DoF) bulk acoustic wave (BAW) resonant sensors, including 1, 2, and 3-DoF devices, where piezoelectric actuation and sensing methods were adopted. Zeolitic imidazolate framework-8 (ZIF-8) was chosen for the adsorption and desorption of the ethanol vapor, thereby facilitating the gas sensing mechanism and introducing the external mass changes to the multi-DoF resonating system. Similar to conventional quartz crystal microbalance (QCM) gas sensors, the frequency shift of all the devices (1, 2, and 3-DoF devices) was tracked to characterize the sensitivity.

View Article and Find Full Text PDF

Advancements in patterning techniques for metal-organic frameworks (MOFs) are crucial for their integration into microelectronics. However, achieving precise nanoscale control of MOF structures remains challenging. In this work, a resist-free method for patterning MOFs is demonstrated using extreme ultraviolet (EUV) lithography with a resolution of 40 nm.

View Article and Find Full Text PDF

The successful development of a metal-organic framework (MOF)-derived Co/CoO/C core-shell composite integrated into laser-induced graphitic (LIG) carbon electrodes for electrochemical sensing is reported. The sensors are fabricated via a direct laser scribing technique using a UV laser (355 nm wavelength) to induce the photothermolysis of rationally selected ZIF-67 into the LIG matrix. Electrochemical characterization reveals that the incorporation of the laser-scribed ZIF-67-derived composite on the electrode surface reduces the impedance more than 100 times compared with bare LIG sensors.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the relationship between surface characteristics like wetting and topography and their impact on ice adhesion strength (IAS), highlighting inconsistencies in previous research efforts.
  • It summarizes various wetting and topography parameters linked to IAS and evaluates a broad range of surfaces using advanced measurement techniques.
  • Findings reveal significant errors in past assumptions about IAS correlations, particularly challenging the notion of practical work of adhesion, and identify a promising wetting parameter that could effectively correlate with shear IAS on certain smooth surfaces.
View Article and Find Full Text PDF

Controlling the structure and functionality of crystalline metal-organic frameworks (MOFs) using molecular building units and post-synthetic functionalisation presents challenges when extending this approach to their amorphous counterparts (aMOFs). Here, we present a new bottom-up approach for synthesising a series of Zr-based aMOFs, which involves linking metal-organic clusters with specific ligands to regulate local connectivity. In addition, we overcome the limitations of post-synthetic modifications in amorphous systems, demonstrating that homogeneous functionalisation is achievable even without regular internal voids.

View Article and Find Full Text PDF

Dense metal-organic frameworks with high spin paramagnetic nodes are competitive materials for cryogenic magnetic refrigeration, particularly in applications for which local cooling is advantageous. We focus on obtaining thin films of gadolinium formate, which has a large volumetric magnetocaloric effect. Continuous and homogeneous deposits of gadolinium formate are successfully formed on silicon by means of aerosol jet printing, with control over the film thickness from 0.

View Article and Find Full Text PDF

Adsorptive separations by nanoporous materials are major industrial processes. The industrial importance of solid adsorbents is only expected to grow due to the increased focus on carbon dioxide capture technology and energy-efficient separations. To evaluate the performance of an adsorbent and design a separation process, the adsorption thermodynamics and kinetics must be known.

View Article and Find Full Text PDF

Advanced deposition routes are vital for the growth of functional metal-organic thin films. The gas-phase atomic/molecular layer deposition (ALD/MLD) technique provides solvent-free and uniform nanoscale thin films with unprecedented thickness control and allows straightforward device integration. Most excitingly, the ALD/MLD technique can enable the in situ growth of novel crystalline metal-organic materials.

View Article and Find Full Text PDF

Magnetic Resonance Imaging (MRI) often encounters image quality degradation due to magnetic field inhomogeneities. Conventional passive shimming techniques involve the manual placement of discrete magnetic materials, imposing limitations on correcting complex inhomogeneities. To overcome this, we propose a novel 3D printing method utilizing binder jetting technology to enable precise deposition of a continuous range of concentrations of ferromagnetic ink.

View Article and Find Full Text PDF

Precise control over the crystalline phase and crystallographic orientation within thin films of metal-organic frameworks (MOFs) is highly desirable. Here, we report a comparison of the liquid- and vapour-phase film deposition of two copper-dicarboxylate MOFs starting from an oriented metal hydroxide precursor. X-ray diffraction revealed that the vapour- or liquid-phase reaction of the linker with this precursor results in different crystalline phases, morphologies, and orientations.

View Article and Find Full Text PDF

Heterobimetallic Metal-Organic Frameworks (MOFs) synergically combine the properties of two metal ions, thus offering significant advantages over homometallic MOFs in gas storage, separation, and catalysis, among other applications. However, these remain centered on bulk materials, while applications that require functional coatings on solid supports are not developed. We explore for the first time the deposition of heterometallic Ti-based MOF thin films using vapor-assisted conversion on substrates functionalized with a self-assembled monolayer.

View Article and Find Full Text PDF

In this work, we investigate the vapor-assisted synthesis of the metal-organic framework MOF-74 starting from three metal oxides (ZnO, CoO, and MgO). Depending on the nature of the added vapor (HO, DMF, DMSO), the metal oxide, and the temperature, the outcome of the reaction can be directed towards the desired porous phase. and XRD measurements reveal the formation of an intermediate phase during the reaction of MgO with Hdobdc, while the MOF-74 phase forms directly for ZnO and CoO.

View Article and Find Full Text PDF

1,2-Dioxygenation of alkenes leads to a structural motif ubiquitous in organic synthons, natural products and active pharmaceutical ingredients. Straightforward and green synthesis protocols starting from abundant raw materials are required for facile and sustainable access to these crucial moieties. Especially industrially abundant aliphatic alkenes have proven to be arduous substrates in sustainable 1,2-dioxygenation methods.

View Article and Find Full Text PDF

Their chemical diversity, uniform pore sizes, and large internal surface areas make metal-organic frameworks (MOFs) highly suitable for volatile organic compound (VOC) adsorption. This work compares two geometries of capacitive VOC sensors that use the MOF material ZIF-8 as an affinity layer. When using a permeable top electrode (thickness < 25 nm), the metal-insulator-metal (MIM) sandwich configuration exhibits superior sensitivity, an improved detection limit, and a smaller footprint than the conventional interdigitated electrode layout.

View Article and Find Full Text PDF

Humins are a by-product of many acid-catalyzed biorefinery processes converting polysaccharides into platform chemicals. The valorization of humin residue to increase the profit of biorefinery operations and reduce waste is a field that is growing interest as the production of humins continues to increase. This includes their valorization in materials science.

View Article and Find Full Text PDF
Article Synopsis
  • Micropatterning MOFs with oriented pores is crucial for creating devices with specific directional properties, informed by their tunable chemical structure.* -
  • A patterned MOF film is developed using X-ray exposure and a photomask, allowing the film to decompose in certain areas while maintaining integrity elsewhere, functioning as both a resist and a porous material.* -
  • The resulting micropatterns, enhanced with fluorescent dyes, can be manipulated for various optical applications, such as creating diffraction gratings and controlling light responses, supporting advancements in microfabrication for photonic devices.*
View Article and Find Full Text PDF

Atomic/molecular layer deposition (ALD/MLD) allows for the direct gas-phase synthesis of crystalline metal-organic framework (MOF) thin films. Here, we show for the first time using krypton and methanol physisorption measurements that ALD/MLD-fabricated copper 1,4-benzenedicarboxylate (Cu-BDC) ultrathin films possess accessible porosity matching that of the corresponding bulk MOF.

View Article and Find Full Text PDF

Crystalline coordination polymers with high electrical conductivities and charge carrier mobilities might open new opportunities for electronic devices. However, current solvent-based synthesis methods hinder compatibility with microfabrication standards. Here, we describe a solvent-free chemical vapor deposition method to prepare high-quality films of the two-dimensional conjugated coordination polymer Cu-BHT (BHT = benzenehexanothiolate).

View Article and Find Full Text PDF

A vapor-assisted synthesis method was developed for the metal-organic framework (MOF) HKUST-1 in both powder and film format. The use of a solvent template supplied from the vapor phase is essential to form the framework under these conditions. Chemical vapor deposition of HKUST-1 films (MOF-CVD) results in smooth films that show the expected adsorption behavior.

View Article and Find Full Text PDF

Composites formed by a metal-organic framework (MOF) and an ionic liquid (IL) are potentially interesting materials for applications ranging from gas separation to electrochemical devices. Consequently, there is a need for robust and low-cost preparation procedures that are compatible with the desired applications. We herein report a solvent-free, one-step, and vapor-based ship-in-bottle synthesis of the IL@MOF composite 1-butyl-3-methylimidazolium bromide@ZIF-8 in powder and thin film forms.

View Article and Find Full Text PDF

Porosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer-Emmett-Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials.

View Article and Find Full Text PDF

ConspectusPorous metal-organic frameworks (MOFs), formed from organic linkers and metal nodes, have attracted intense research attention. Because of their high specific surface areas, uniform and adjustable pore sizes, and versatile physicochemical properties, MOFs have shown disruptive potential in adsorption, catalysis, separation, etc. For many of these applications, MOFs are synthesized solvothermally as bulk powders and subsequently shaped as pellets or extrudates.

View Article and Find Full Text PDF