Purpose: An ocular applicator that fits a commercial proton snout with an upstream range shifter to allow for treatments with sharp lateral penumbra is described.
Materials And Methods: The validation of the ocular applicator consisted of a comparison of range, depth doses (Bragg peaks and spread out Bragg peaks), point doses, and 2-D lateral profiles. Measurements were made for three field sizes, 1.
Support Care Cancer
October 2022
Introduction: Despite reduction of xerostomia with intensity-modulated compared to conformal X-ray radiotherapy, radiation-induced dental complications continue to occur. Proton therapy is promising in head and neck cancers to further reduce radiation-induced side-effects, but the optimal dental management has not been defined.
Material And Methods: Dental management before proton therapy was assessed compared to intensity-modulated radiotherapy based on a bicentric experience, a literature review and illustrative cases.
Treatment of ocular tumors on dedicated scattering-based proton therapy systems is standard afforded due to sharp lateral and distal penumbras. However, most newer proton therapy centers provide pencil beam scanning treatments. In this paper, we present a pencil beam scanning (PBS)-based ocular treatment solution.
View Article and Find Full Text PDFPurpose: This work aims to validate new 6D couch features and their implementation for seated radiotherapy in RayStation (RS) treatment planning system (TPS).
Materials And Methods: In RS TPS, new 6D couch features are (i) chair support device, (ii) patient treatment option of "Sitting: face towards the front of the chair", and (iii) patient support pitch and roll capabilities. The validation of pitch and roll was performed by comparing TPS generated DRRs with planar x-rays.
Purpose: This study aims to investigate the use of machine learning models for delivery error prediction in proton pencil beam scanning (PBS) delivery.
Methods: A dataset of planned and delivered PBS spot parameters was generated from a set of 20 prostate patient treatments. Planned spot parameters (spot position, MU and energy) were extracted from the treatment planning system (TPS) for each beam.
Transl Lung Cancer Res
April 2018
The accuracy of dose calculation is vital to the quality of care for patients undergoing proton beam therapy (PBT). Currently, the dose calculation algorithms available in commercial treatment planning systems (TPS) in PBT are classified into two classes: pencil beam (PB) and Monte-Carlo (MC) algorithms. PB algorithms are still regarded as the standard of practice in PBT, but they are analytical approximations whereas MC algorithms use random sampling of interaction cross-sections that represent the underlying physics to simulate individual particles trajectories.
View Article and Find Full Text PDFJ Appl Clin Med Phys
March 2016
The purpose of this study was to evaluate the accuracy and clinical feasibility of a motion monitoring method employing simultaneously acquired MV and kV images during volumetric-modulated arc therapy (VMAT). Short-arc digital tomosynthesis (SA-DTS) is used to improve the quality of the MV images that are then combined with orthogonally acquired kV images to assess 3D motion. An anthropomorphic phantom with implanted gold seeds was used to assess accuracy of the method under static, typical prostatic, and respiratory motion scenarios.
View Article and Find Full Text PDFPurpose: To investigate constancy, within a treatment session, of the time lag relationship between implanted markers in abdominal tumors and an external motion surrogate.
Methods: Six gastroesophageal junction and three pancreatic cancer patients (IRB-approved protocol) received two cone-beam CTs (CBCT), one before and one after treatment. Time between scans was less than 30 min.
Purpose: The purpose of this work is to develop a method for accurately quantifying effective magnetic moments of spherical-like small objects from magnetic resonance imaging (MRI). A standard 3D gradient echo sequence with only one echo time is intended for our approach to measure the effective magnetic moment of a given object of interest.
Methods: Our method sums over complex MR signals around the object and equates those sums to equations derived from the magnetostatic theory.
Purpose: Certain types of commonly used fiducial markers take on irregular shapes upon implantation in soft tissue. This poses a challenge for methods that assume a predefined shape of markers when automatically tracking such markers in kilovoltage (kV) radiographs. The authors have developed a method of automatically tracking regularly and irregularly shaped markers using kV projection images and assessed its potential for detecting intrafractional target motion during rotational treatment.
View Article and Find Full Text PDFSmall changes in the synthesis of MnAs nanoparticles lead to materials with distinct behavior. Samples prepared by slow heating to 523 K (type-A) exhibit the characteristic magnetostructural transition from the ferromagnetic hexagonal (α) to the paramagnetic orthorhombic (β) phase of bulk MnAs at Tp = 312 K, whereas those prepared by rapid nucleation at 603 K (type-B) adopt the β structure at room temperature and exhibit anomalous magnetic properties. The behavior of type-B nanoparticles is due to P-incorporation (up to 3%), attributed to reaction of the solvent (trioctylphosphine oxide).
View Article and Find Full Text PDFPurpose: Real-time tracking of respiratory target motion during radiation therapy is technically challenging, owing to rapid and possibly irregular breathing variations. The authors report on a method to predict and correct respiration-averaged drift in target position by means of couch adjustments on an accelerator equipped with such capability.
Methods: Dose delivery is broken up into a sequence of 10 s field segments, each followed by a couch adjustment based on analysis of breathing motion from an external monitor as a surrogate of internal target motion.