A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Technical Note: Intrafractional changes in time lag relationship between anterior-posterior external and superior-inferior internal motion signals in abdominal tumor sites. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To investigate constancy, within a treatment session, of the time lag relationship between implanted markers in abdominal tumors and an external motion surrogate.

Methods: Six gastroesophageal junction and three pancreatic cancer patients (IRB-approved protocol) received two cone-beam CTs (CBCT), one before and one after treatment. Time between scans was less than 30 min. Each patient had at least one implanted fiducial marker near the tumor. In all scans, abdominal displacement (Varian RPM) was recorded as the external motion signal. Purpose-built software tracked fiducials, representing internal signal, in CBCT projection images. Time lag between superior-inferior (SI) internal and anterior-posterior external signals was found by maximizing the correlation coefficient in each breathing cycle and averaging over all cycles. Time-lag-induced discrepancy between internal SI position and that predicted from the external signal (external prediction error) was also calculated.

Results: Mean ± standard deviation time lag, over all scans and patients, was 0.10 ± 0.07 s (range 0.01-0.36 s). External signal lagged the internal in 17/18 scans. Change in time lag between pre- and post-treatment CBCT was 0.06 ± 0.07 s (range 0.01-0.22 s), corresponding to 3.1% ± 3.7% (range 0.6%-10.8%) of gate width (range 1.6-3.1 s). In only one patient, change in time lag exceeded 10% of the gate width. External prediction error over all scans of all patients varied from 0.1 ± 0.1 to 1.6 ± 0.4 mm.

Conclusions: Time lag between internal motion along SI and external signals is small compared to the treatment gate width of abdominal patients examined in this study. Change in time lag within a treatment session, inferred from pre- to post-treatment measurements is also small, suggesting that a single measurement of time lag at the session start is adequate. These findings require confirmation in a larger number of patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433481PMC
http://dx.doi.org/10.1118/1.4919446DOI Listing

Publication Analysis

Top Keywords

time lag
36
change time
12
gate width
12
time
10
lag
9
external
9
lag relationship
8
anterior-posterior external
8
superior-inferior internal
8
internal motion
8

Similar Publications