Publications by authors named "Qingchen Yang"

Fractional orbital angular momentum (FOAM) beams possessing radially notched intensity distributions play a unique role in fields such as optical manipulation and optical communication. Due to multiple scattering, the direct transmission of FOAM beams through highly scattering media, such as thick biological tissues and fog, remains challenging, inhibiting the applications of FOAM beams behind these media. To address this issue, we propose an approach to overcome high scattering and establish FOAM beams through highly scattering media.

View Article and Find Full Text PDF

In this work, full-color and stable white organic afterglow materials with outstanding water, organic solvents, and temperature resistances have been developed for the first time by embedding the selected polycyclic aromatic hydrocarbons into melamine-formaldehyde polymer via solution polymerization. The afterglow quantum yields and lifetimes of the resulting polymer films were up to 22.7 % and 4.

View Article and Find Full Text PDF

In this work, an efficient polymer-based organic afterglow system, which shows reversible photochromism, switchable ultralong organic phosphorescence (UOP), and prominent water and chemical resistance simultaneously, has been developed for the first time. By doping phenoxazine (PXZ) and 10-ethyl-10H-phenoxazine (PXZEt) into epoxy polymers, the resulting PXZ@EP-0.25 % and PXZEt@EP-0.

View Article and Find Full Text PDF

Metformin is accepted as a first-line drug for the therapy of Type 2 diabetes (T2D), while its mechanism is still controversial. In the present study, by taking advantage of mouse model of high-fat-diet (HFD)-induced obesity and primary mouse hepatocytes (PMHCs) as well as human hepatocyte L02 cell line, we aimed to investigate the involvement of SIRTs during the application of metformin for the therapy of T2D. Our data evidenced that during HFD-induced obesity, there was elevation of nucleus protein acetylation.

View Article and Find Full Text PDF

The sirtuin 6 (SIRT6) participates in regulating glucose and lipid homeostasis. However, the function of SIRT6 in the process of cardiac pathogenesis caused by obesity-associated lipotoxicity remains to be unveiled. This study was designed to elucidate the role of SIRT6 in the pathogenesis of cardiac injury due to nutrition overload-induced obesity and explore the downstream signaling pathways affecting oxidative stress in the heart.

View Article and Find Full Text PDF

Pro-inflammatory cytokines play important roles in sepsis-induced cardiac injury. Among various cytokines, the function of Interleukin-6 (IL-6) in the regulation of cardiomyocyte injury remains to be elucidated. This study aimed to investigate whether IL-6 plays a key role in the sepsis-induced cardiomyocyte injury and the possible mechanism.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers identified significant changes in gene expression when DC-F1 was exposed to Hg(II), revealing 3,439 differentially expressed genes that are involved in its resistance to the toxin.
  • * The findings highlight that the fungus employs a cooperative mechanism involving multiple systems, including a mercury detoxification system, metabolism of thiol compounds, and a response to oxidative stress, suggesting its potential for bioremediation of mercury-contaminated environments.
View Article and Find Full Text PDF

Skeletal muscle is responsible for the majority of glucose disposal in the body. Insulin resistance in the skeletal muscle accounts for 85-90% of the impairment of total glucose disposal in patients with type 2 diabetes (T2D). However, the mechanism remains controversial.

View Article and Find Full Text PDF

Bioremediation of Hg-contaminated soil using microbe-based strategies is a promising and efficient method as it is inexpensive and not harmful to the environment. In this study, a novel Hg(II)-volatilizing fungus Penicillium spp., DC-F11 was isolated and showed bioremediation potential for reducing Hg(II) phytotoxicity, total Hg, and exchangeable Hg in Hg(II)-polluted soil.

View Article and Find Full Text PDF

Biological approaches are considered promising and eco-friendly strategies to remediate Hg contamination in soil. This study investigated the potential of two 'green' additives, Hg-volatilizing bacteria (Pseudomonas sp. DC-B1 and Bacillus sp.

View Article and Find Full Text PDF

Reducing Hg contamination in soil using eco-friendly approaches has attracted increasing attention in recent years. In this study, a novel multi-metal-resistant Hg-volatilizing fungus belonging to Lecythophora sp., DC-F1, was isolated from multi-metal-polluted mining-area soil, and its performance in reducing Hg bioavailability in soil when used in combination with biochar was investigated.

View Article and Find Full Text PDF

The peptide-derived self-assembly platform has attracted increasing attention for its great potential to develop into multitargeting nanomedicines as well as its inherent biocompatibility and biodegradability. However, their clinical application potentials are often compromised by low stability, weak membrane penetrating ability, and limited functions. Herein, inspired by a natural protein from the seeds of Luffa cylindrica, we engineered via epitope grafting and structure design a hybrid peptide-based nanoplatform, termed Lupbin, which is capable of self-assembling into a stable superstructure and concurrently targeting multiple protein-protein interactions (PPIs) located in cytoplasm and nuclei.

View Article and Find Full Text PDF

Hg contamination is a critical environmental problem, and its remediation using cost-effective and environmentally friendly methods is highly desirable. In this study, a multi-metal-resistant bacterium showing strong Hg(II) volatilization ability, Pseudomonas sp. DC-B1, was isolated from heavy metal-contaminated soils.

View Article and Find Full Text PDF

Bioimaging at a subcellular resolution to label cytoplasm and nucleus in living cell by just one photoluminescent nanoparticle has great application potential in bioresearch, preclinical diagnosis, screening, and image-guided therapy of life-threatening diseases. Herein, we report a novel arginine (Arg) functionalized ultra-small lanthanide oxyfluoride nanocrystals (LaOF) for simultaneously targeted imaging cell cytoplasm and nucleus. As-prepared Arg-modified PAA capped LaOF: 45%Ce, 15%Tb nanocrystals (LaOF:Ce,Tb@PAA@Arg) possessed high water dispersibility, ultra-small size (∼5.

View Article and Find Full Text PDF