Publications by authors named "Paul B Yu"

Background: Animal models are used widely to study pulmonary hypertension (PH). The cell populations that respond to disease-inducing stimuli in these models and their relationship to human disease remain incompletely defined.

Materials And Method: This study analyzed the relationship between several rodent models of PH and human disease at single-cell resolution.

View Article and Find Full Text PDF

TGFβ superfamily proteins can affect cellular differentiation, thermogenesis, and fibrosis in mammalian adipose tissue. Here we describe a role for Growth Differentiation Factor 3 (GDF3) on mature adipocyte biology. We find inducible GDF3 loss of function in obese adult mice leads to reduced lipolysis, improved glucose tolerance, and reduced glycemic variability.

View Article and Find Full Text PDF

Cardiac complications, including myocardial injury and dysfunction, are common in severe viral respiratory infections (VRI) and are associated with increased mortality . The pathophysiology of VRI-induced myocardial injury is multifactorial, but frequently involves structural damage to the heart's microvascular network that leads to subsequent myocardial ischemia and dysfunction . Currently, there are no targeted therapies available to prevent or attenuate VRI-associated myocardial injury.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a life-threatening disorder characterized by increased pulmonary blood pressures and regional inhomogeneities in flows, with diagnostic and treatment challenges arising from diverse underlying pathogenic mechanisms. Conventional models often obscure the mechanistic nuances of PAH by failing to replicate the dynamic mechanical environment of the diseased lung, limiting the identification of specific molecular patterns. To address this, we employed an shear stress model simulating physiological or pathological conditions to explore the transcriptional heterogeneity of human pulmonary microvascular endothelial cells (hPMECs) from PAH patients and healthy controls within their respective biomechanical context.

View Article and Find Full Text PDF

Derangements in the innate and adaptive immune responses observed in systemic inflammatory syndromes contributes to unique elevated atherosclerotic risk and incident cardiovascular disease. Novel multimodality imaging techniques may improve diagnostic precision for the screening and monitoring of disease activity. The integrated application of these technologies lead to earlier diagnosis and noninvasive monitoring of cardiac involvement in systemic inflammatory diseases that will aid in preclinical studies, enhance patient selection, and provide surrogate endpoints in clinical trials, thereby improving clinical outcomes.

View Article and Find Full Text PDF

Background: BETs (bromodomain and extraterminal domain-containing epigenetic reader proteins), including BRD4 (bromodomain-containing protein 4), orchestrate transcriptional programs induced by pathogenic stimuli, as intensively studied in cardiovascular disease and elsewhere. In endothelial cells (ECs), BRD4 directs induced proinflammatory, proatherosclerotic transcriptional responses; BET inhibitors, like JQ1, repress these effects and decrease atherosclerosis. While BET effects in pathogenic conditions have prompted therapeutic BET inhibitor development, BET action under basal conditions, including ECs, has remained understudied.

View Article and Find Full Text PDF

Aims: Blood eosinophil count and eosinophil cationic protein (ECP) concentration are risk factors of cardiovascular diseases. This study tested whether and how eosinophils and ECP contribute to vascular calcification and atherogenesis.

Methods And Results: Immunostaining revealed eosinophil accumulation in human and mouse atherosclerotic lesions.

View Article and Find Full Text PDF

Intrapulmonary arteries located in the proximal lung differ from those in the distal lung in size, cellular composition, and the surrounding microenvironment. However, whether these structural variations lead to region-specific regulation of vasoreactivity in homeostasis and following injury is unknown. Herein, we employ a two-step method of precision-cut lung slice (PCLS) preparation, which maintains almost intact intrapulmonary arteries, to assess contractile and relaxation responses of proximal preacinar arteries (PaAs) and distal intraacinar arteries (IaAs) in mice.

View Article and Find Full Text PDF
Article Synopsis
  • Pulmonary arterial hypertension (PAH) involves a loss of microvessels, and the study investigates how Wnt pathways influence angiogenesis in these vessels.
  • * The research shows that healthy pulmonary microvascular endothelial cells (PMVECs) express higher levels of Wnt7a, which is crucial for forming new blood vessels; this expression is missing in PAH patients.
  • * Results indicate that Wnt7a aids VEGF signaling, and its absence leads to inadequate angiogenic responses, suggesting that Wnt7a deficiency might play a role in the worsening of small vessel function in PAH.*
View Article and Find Full Text PDF

Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare disorder involving skeletal dysplasia and heterotopic ossification (HO) of muscle and connective tissue. We aimed to define a novel biomarker in FOP that enables reliable assessment of musculoskeletal tissue integrity. Considering logistical difficulties that FOP patients often face, our goal was to identify an at-home biomarker technique.

View Article and Find Full Text PDF

Background: Fibrodysplasia Ossificans Progressiva (FOP) is a genetic, progressive and devastating disease characterized by severe heterotopic ossification (HO), loss of mobility and early death. There are no FDA approved medications. The STOPFOP team identified AZD0530 (saracatinib) as a potent inhibitor of the ALK2/ACVR1-kinase which is the causative gene for this rare bone disease.

View Article and Find Full Text PDF
Article Synopsis
  • Sotatercept is a fusion protein that helps improve lung and heart function in patients with pulmonary arterial hypertension (PAH) by trapping certain proteins, though its exact mechanisms are not fully understood.
  • In a study using rat models of severe PAH, treatment with Sotatercept significantly decreased inflammation and abnormal cell growth in the lungs compared to traditional vasodilators, and normalized immune cell behavior.
  • The findings indicate that Sotatercept has beneficial anti-inflammatory effects alongside its known ability to reduce abnormal vascular cell growth, suggesting it could be an effective stand-alone or supplementary treatment for PAH patients.
View Article and Find Full Text PDF

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder whose most debilitating pathology is progressive and cumulative heterotopic ossification (HO) of skeletal muscles, ligaments, tendons, and fascia. FOP is caused by mutations in the type I BMP receptor gene ACVR1, which enable ACVR1 to utilize its natural antagonist, activin A, as an agonistic ligand. The physiological relevance of this property is underscored by the fact that HO in FOP is exquisitely dependent on activation of FOP-mutant ACVR1 by activin A, an effect countered by inhibition of anti-activin A via monoclonal antibody treatment.

View Article and Find Full Text PDF
Article Synopsis
  • There's a growing recognition of the right heart and pulmonary circulation's role in diseases like pulmonary hypertension and left heart failure, but assessing them is complicated due to their complex structures and interrelated conditions.
  • New imaging technologies like advanced echocardiography, magnetic resonance, and molecular imaging are emerging, offering more precise assessments of the right heart and pulmonary circulation.
  • Despite the promise of these innovative imaging techniques for earlier diagnosis and noninvasive monitoring, they have not yet been fully validated for clinical use in diagnosing or tracking these diseases.
View Article and Find Full Text PDF

Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare progressive genetic disease effecting one in a million individuals. During their life, patients with FOP progressively develop bone in the soft tissues resulting in increasing immobility and early death. A mutation in the gene was identified as the causative mutation of FOP in 2006.

View Article and Find Full Text PDF

Heterotopic ossification (HO) occurs as a common complication after injury or in genetic disorders. The mechanisms underlying HO remain incompletely understood, and there are no approved prophylactic or secondary treatments available. Here, we identify a self-amplifying, self-propagating loop of Yes-associated protein (YAP)-Sonic hedgehog (SHH) as a core molecular mechanism underlying diverse forms of HO.

View Article and Find Full Text PDF

Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder of progressive ossification of skeletal muscle, fascia, tendons, and ligaments. Most FOP cases are caused by a heterozygous c. 617G > A mutation in the ACVR1 gene which encodes a gain-of-function of bone morphogenetic protein type I receptor.

View Article and Find Full Text PDF

Currently, no effective therapies exist for fibrodysplasia ossificans progressiva (FOP), a rare congenital syndrome in which heterotopic bone is formed in soft tissues owing to dysregulated activity of the bone morphogenetic protein (BMP) receptor kinase ALK2 (also known as ACVR1). From a screen of known biologically active compounds, we identified saracatinib as a potent ALK2 kinase inhibitor. In enzymatic and cell-based assays, saracatinib preferentially inhibited ALK2, compared with other receptors of the BMP/TGF-β signaling pathway, and induced dorsalization in zebrafish embryos consistent with BMP antagonism.

View Article and Find Full Text PDF

The mechanisms of diabetic retinopathy (DR), are not yet fully understood. We previously demonstrated an upregulation of retinal bone morphogenetic protein-2 (BMP2) in experimental diabetes and in retinas of diabetic human subjects. The purpose of current study was to investigate the role of non-canonical inflammatory pathway in BMP2-induced retinal endothelial cell (REC) barrier dysfunction.

View Article and Find Full Text PDF

Background: Pain is a highly prevalent symptom experienced by patients across numerous rare musculoskeletal conditions. Much remains unknown regarding the central, neurobiological processes associated with clinical pain in musculoskeletal disease states. Fibrodysplasia ossificans progressiva (FOP) is an inherited condition characterized by substantial physical disability and pain.

View Article and Find Full Text PDF