The speckle noise generated during digital holographic interferometry (DHI) is unavoidable and difficult to eliminate, thus reducing its accuracy. We propose a self-supervised deep-learning speckle denoising method using a cycle-consistent generative adversarial network to mitigate the effect of speckle noise. The proposed method integrates a 4-f optical speckle noise simulation module with a parameter generator.
View Article and Find Full Text PDFIn digital holography and holographic interferometry, refocusing to the correct image plane can be challenging and may be obtained by various metrics. This paper proposes a digital refocus approach utilizing the linear relationship between in-plane speckle motion and defocus as a response to an induced phase gradient. The theory based on cross-correlations between pairs of intensity images reconstructed at different distances from the recording plane is discussed.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
April 2023
This paper presents a theoretical modeling of the speckle noise decorrelation in digital Fresnel holographic interferometry in out-of-focus reconstructed images. The complex coherence factor is derived by taking into account the focus mismatch, which depends on both the sensor-to-object distance and the reconstruction distance. The theory is confirmed by both simulated data and experimental results.
View Article and Find Full Text PDFDigital image correlation, deflectometry and digital holography are some of the full-field optical measurement techniques that have matured in recent years. Their use in vibroacoustic applications is gaining attention and there is a need for cataloging their performance in order to provide, to a broad community of users and potential future users, quantitative and qualitative evaluations of these three approaches. This paper presents an experimental comparison of the three optical methods in the context of vibration measurements, along with classical reference measurements provided by an accelerometer and a laser Doppler vibrometer.
View Article and Find Full Text PDFSpeckle denoising can improve digital holographic interferometry phase measurements but may affect experimental accuracy. A deep-learning-based speckle denoising algorithm is developed using a conditional generative adversarial network. Two subnetworks, namely discriminator and generator networks, which refer to the U-Net and DenseNet layer structures are used to supervise network learning quality and denoising.
View Article and Find Full Text PDFDigital holography is well adapted to measure any modifications related to any objects. The method refers to digital holographic interferometry where the phase change between two states of the object is of interest. However, the phase images are corrupted by the speckle decorrelation noise.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
February 2022
We present a review of deep learning algorithms dedicated to the processing of speckle noise in coherent imaging. We focus on methods that specifically process de-noising of input images. Four main classes of applications are described in this review: optical coherence tomography, synthetic aperture radar imaging, digital holography amplitude imaging, and fringe pattern analysis.
View Article and Find Full Text PDFOpt Express
October 2021
This paper presents analytical modeling of the speckle decorrelation noise in digital Fresnel holographic interferometry. The theoretical analysis is carried out by considering the complex coherence factor between two speckled images from two digitally reconstructed holograms at two different instants. The expression giving the modulus of the coherence factor is established and depends on the local surface deformation and parameters from the holographic setup.
View Article and Find Full Text PDFThis Roadmap article on digital holography provides an overview of a vast array of research activities in the field of digital holography. The paper consists of a series of 25 sections from the prominent experts in digital holography presenting various aspects of the field on sensing, 3D imaging and displays, virtual and augmented reality, microscopy, cell identification, tomography, label-free live cell imaging, and other applications. Each section represents the vision of its author to describe the significant progress, potential impact, important developments, and challenging issues in the field of digital holography.
View Article and Find Full Text PDFThis paper presents analytical modelling for describing the speckle noise decorrelation in phase data from two- or multiple-wavelength digital holography. A novel expression for the modulus of the coherence factor is proposed for the case of two-wavelength speckle decorrelation from imaging roughness and surface shape through an optical system. The expression permits us to estimate the speckle decorrelation phase noise in surface shape measurements.
View Article and Find Full Text PDFData acquisition and processing is a critical issue for high-speed applications, especially in three-dimensional live cell imaging and analysis. This paper focuses on sparse-data sample rotation tomographic reconstruction and analysis with several noise-reduction techniques. For the sample rotation experiments, a live Candida rugosa sample is used and controlled by holographic optical tweezers, and the transmitted complex wavefronts of the sample are recorded with digital holographic microscopy.
View Article and Find Full Text PDFThe use of high-speed cameras permits to visualize, analyze or study physical phenomena at both their time and spatial scales. Mixing high-speed imaging with coherent imaging allows recording and retrieving the optical path difference and this opens the way for investigating a broad variety of scientific challenges in biology, medicine, material science, physics and mechanics. At high frame rate, simultaneously obtaining suitable performance and level of accuracy is not straightforward.
View Article and Find Full Text PDFThis paper discusses noise and bias in the method of holographic interferometry applied to the study of acoustics phenomena. The influence of noise on the measurement of acoustic pressure is described by an analytical approach. Relationships to quantify the minimum measurable fluid density and acoustic pressure are given by taking into account the experimental parameters of the setup.
View Article and Find Full Text PDFThe OSA Topical Meeting on Digital Holography and 3D Imaging (DH) was held 20-23 May 2019 in Bordeaux, France. Feature issues based on the DH meeting series have been released by Applied Optics (AO) since 2007. This year, AO and the Journal of the Optical Society of America A (JOSA A) jointly decided to have one such feature issue in each journal.
View Article and Find Full Text PDFThe presence of speckle noise and dislocations makes phase restoration potentially difficult in quantitative phase imaging and metrology. Unfortunately, there is no appropriate approach to deal with phase data corrupted by high speckle noise and phase dislocations. Usually, processing schemes may deal with low-pass phase filtering, phase unwrapping, or phase inpainting.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
December 2019
The OSA Topical Meeting on Digital Holography and 3D Imaging (DH) was held 20-23 May 2019 in Bordeaux, France. Feature issues based on the DH meeting series have been released by Applied Optics (AO) since 2007. This year, AO and the Journal of the Optical Society of America A (JOSA A) jointly decided to have one such feature issue in each journal.
View Article and Find Full Text PDFThis paper presents a comprehensive study on the contrast transfer function of de-noising algorithms. In order to cover a broad variety of methods, 45 de-noising algorithms are chosen considering their recognized efficiency in the different application domains of image processing. Advanced methods are targeted: wavelet transform-based algorithms with Daubechies, symlets, curvelets, contourlets, patch-based methods such as BM3D, NL-means algorithms and deep learning approaches; in addition, classical spatial filtering methods are considered, such as Wiener, median, Gauss filtering, and adaptive filtering approaches such as anisotropic diffusion and synthetic aperture radar filtering.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
February 2019
The OSA Topical Meeting on Digital Holography and 3D Imaging (DH) was held June 25-28, 2018, in Orlando, Florida, USA. Feature issues based on the DH meeting series have been released by Applied Optics (AO) since 2007. This year, AO and the Journal of the Optical Society of America A (JOSA A) jointly decided to have one such feature issue in each journal.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
February 2019
This paper presents a comparative study of multi-look approaches for de-noising phase maps from digital holographic interferometry. A database of 160 simulated phase fringe patterns with eight different phase fringe patterns with fringe diversity was computed. For each fringe pattern, 20 realistic noise realizations are generated in order to simulate a multi-look process with 20 inputs.
View Article and Find Full Text PDFThe OSA Topical Meeting on Digital Holography and 3D Imaging (DH) was held June 25-June 28, 2018, in Orlando, Florida, USA. Feature issues based on the DH meeting series have been released by Applied Optics (AO) since 2007. This year, AO and the Journal of the Optical Society of America A (JOSA A) jointly decided to have one such feature issue in each journal.
View Article and Find Full Text PDFDigital holography (DH) has emerged as one of the most effective coherent imaging technologies. The technological developments of digital sensors and optical elements have made DH the primary approach in several research fields, from quantitative phase imaging to optical metrology and 3D display technologies, to name a few. Like many other digital imaging techniques, DH must cope with the issue of speckle artifacts, due to the coherent nature of the required light sources.
View Article and Find Full Text PDFThe OSA Topical Meeting on Digital Holography and 3D Imaging (DH) was held 29 May to 1 June 2017 in Jeju Island, South Korea. Feature issues based on the DH meeting series have been released by Applied Optics (AO) since 2007. This year, AO and the Journal of the Optical Society of America A (JOSA A) jointly decided to have one such feature issue in each journal.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
January 2018
This paper presents a reference-free metric for quantitative appraisal of de-noising algorithms for phase measurements in digital holography. In the literature, quality metrics are not self-contained because they require a noise-free reference phase fringe pattern in order to be computed. In practical situations, no exact phase is available to evaluate the quality of processing.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
January 2018
The OSA Topical Meeting on Digital Holography and 3D Imaging (DH) was held 29 May to 1 June 2017 on Jeju Island, South Korea. Feature issues based on the DH meeting series have been released by Applied Optics (AO) since 2007. This year, AO and the Journal of the Optical Society of America A (JOSA A) jointly decided to have one such feature issue in each journal.
View Article and Find Full Text PDFThis paper proposes a quality assessment of focusing criteria for imaging in digital off-axis holography. In the literature, several refocus criteria have been proposed in the past to get the best refocus distance in digital holography. As a general rule, the best focusing plane is determined by the reconstruction distance for which the criterion function presents a maximum or a minimum.
View Article and Find Full Text PDF