The aging global population requires innovative remote monitoring systems to assist doctors and caregivers in assessing the health of elderly patients. Doctors often lack access to continuous behavioral data, making it difficult to detect deviations from normal patterns when elderly patients arrive for a consultation. Without historical insights into common behaviors and potential anomalies detected with unobtrusive techniques (e.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
January 2025
Purpose: Wireless capsule endoscopy (WCE) is a non-invasive technology used for diagnosing gastrointestinal abnormalities. A single examination generates images, making manual review both time-consuming and costly for doctors. Therefore, the development of computer vision-assisted systems is highly desirable to aid in the diagnostic process.
View Article and Find Full Text PDFDespite significant advancements in the automatic classification of skin lesions using artificial intelligence (AI) algorithms, skepticism among physicians persists. This reluctance is primarily due to the lack of transparency and explainability inherent in these models, which hinders their widespread acceptance in clinical settings. The primary objective of this study is to develop a highly accurate AI-based algorithm for skin lesion classification that also provides visual explanations to foster trust and confidence in these novel diagnostic tools.
View Article and Find Full Text PDFOver the past two decades, machine analysis of medical imaging has advanced rapidly, opening up significant potential for several important medical applications. As complicated diseases increase and the number of cases rises, the role of machine-based imaging analysis has become indispensable. It serves as both a tool and an assistant to medical experts, providing valuable insights and guidance.
View Article and Find Full Text PDFHere, we present a comprehensive holography-based system designed for detecting microparticles through microscopic holographic projections of water samples. This system is designed for researchers who may be unfamiliar with holographic technology but are engaged in microparticle research, particularly in the field of water analysis. Additionally, our innovative system can be deployed for environmental monitoring as a component of an autonomous sailboat robot.
View Article and Find Full Text PDFSensors (Basel)
May 2023
Developing computer-aided approaches for cancer diagnosis and grading is currently receiving an increasing demand: this could take over intra- and inter-observer inconsistency, speed up the screening process, increase early diagnosis, and improve the accuracy and consistency of the treatment-planning processes.The third most common cancer worldwide and the second most common in women is colorectal cancer (CRC). Grading CRC is a key task in planning appropriate treatments and estimating the response to them.
View Article and Find Full Text PDFInt J Environ Res Public Health
March 2023
The epidemiology of COVID-19 presented major shifts during the pandemic period. Factors such as the most common symptoms and severity of infection, the circulation of different variants, the preparedness of health services, and control efforts based on pharmaceutical and non-pharmaceutical interventions played important roles in the disease incidence. The constant evolution and changes require the continuous mapping and assessing of epidemiological features based on time-series forecasting.
View Article and Find Full Text PDFSince the emergence of the Covid-19 pandemic in late 2019, medical imaging has been widely used to analyze this disease. Indeed, CT-scans of the lungs can help diagnose, detect, and quantify Covid-19 infection. In this paper, we address the segmentation of Covid-19 infection from CT-scans.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common form of dementia. Computer-aided diagnosis (CAD) can help in the early detection of associated cognitive impairment. The aim of this work is to improve the automatic detection of dementia in MRI brain data.
View Article and Find Full Text PDFNeurodevelopmental disorders (NDD) are impairments of the growth and development of the brain and/or central nervous system. In the light of clinical findings on early diagnosis of NDD and prompted by recent advances in hardware and software technologies, several researchers tried to introduce automatic systems to analyse the baby's movement, even in cribs. Traditional technologies for automatic baby motion analysis leverage contact sensors.
View Article and Find Full Text PDFSince the start of the COVID-19 pandemic many studies investigated the correlation between climate variables such as air quality, humidity and temperature and the lethality of COVID-19 around the world. In this work we investigate the use of climate variables, as additional features to train a data-driven multivariate forecast model to predict the short-term expected number of COVID-19 deaths in Brazilian states and major cities. The main idea is that by adding these climate features as inputs to the training of data-driven models, the predictive performance improves when compared to equivalent single input models.
View Article and Find Full Text PDFCOVID-19 infection recognition is a very important step in the fight against the COVID-19 pandemic. In fact, many methods have been used to recognize COVID-19 infection including Reverse Transcription Polymerase Chain Reaction (RT-PCR), X-ray scan, and Computed Tomography scan (CT- scan). In addition to the recognition of the COVID-19 infection, CT scans can provide more important information about the evolution of this disease and its severity.
View Article and Find Full Text PDFSince the appearance of the COVID-19 pandemic (at the end of 2019, Wuhan, China), the recognition of COVID-19 with medical imaging has become an active research topic for the machine learning and computer vision community. This paper is based on the results obtained from the 2021 COVID-19 SPGC challenge, which aims to classify volumetric CT scans into normal, COVID-19, or community-acquired pneumonia (Cap) classes. To this end, we proposed a deep-learning-based approach (CNR-IEMN) that consists of two main stages.
View Article and Find Full Text PDFIn recent years, automatic tissue phenotyping has attracted increasing interest in the Digital Pathology (DP) field. For Colorectal Cancer (CRC), tissue phenotyping can diagnose the cancer and differentiate between different cancer grades. The development of Whole Slide Images (WSIs) has provided the required data for creating automatic tissue phenotyping systems.
View Article and Find Full Text PDFKnowing an accurate passengers attendance estimation on each metro car contributes to the safely coordination and sorting the crowd-passenger in each metro station. In this work we propose a multi-head Convolutional Neural Network (CNN) architecture trained to infer an estimation of passenger attendance in a metro car. The proposed network architecture consists of two main parts: a convolutional backbone, which extracts features over the whole input image, and a multi-head layers able to estimate a density map, needed to predict the number of people within the crowd image.
View Article and Find Full Text PDFBaggage travelling on a conveyor belt in the sterile area (the rear collector located after the check-in counters) often gets stuck due to traffic jams, mainly caused by incorrect entries from the check-in counters on the collector belt. Using suitcase appearance captured on the Baggage Handling System (BHS) and airport checkpoints and their re-identification allows for us to handle baggage safer and faster. In this paper, we propose a Siamese Neural Network-based model that is able to estimate the baggage similarity: given a set of training images of the same suitcase (taken in different conditions), the network predicts whether the two input images belong to the same baggage identity.
View Article and Find Full Text PDFSeveral studies have found a delay in the development of facial emotion recognition and expression in children with an autism spectrum condition (ASC). Several interventions have been designed to help children to fill this gap. Most of them adopt technological devices (i.
View Article and Find Full Text PDFSensors (Basel)
March 2021
The recognition of COVID-19 infection from X-ray images is an emerging field in the learning and computer vision community. Despite the great efforts that have been made in this field since the appearance of COVID-19 (2019), the field still suffers from two drawbacks. First, the number of available X-ray scans labeled as COVID-19-infected is relatively small.
View Article and Find Full Text PDFDiatoms are among the dominant phytoplankters in marine and freshwater habitats, and important biomarkers of water quality, making their identification and classification one of the current challenges for environmental monitoring. To date, taxonomy of the species populating a water column is still conducted by marine biologists on the basis of their own experience. On the other hand, deep learning is recognized as the elective technique for solving image classification problems.
View Article and Find Full Text PDFInt J Environ Res Public Health
July 2020
The contribution of this paper is twofold. First, a new data driven approach for predicting the Covid-19 pandemic dynamics is introduced. The second contribution consists in reporting and discussing the results that were obtained with this approach for the Brazilian states, with predictions starting as of 4 May 2020.
View Article and Find Full Text PDFThe automatic detection of eye positions, their temporal consistency, and their mapping into a line of sight in the real world (to find where a person is looking at) is reported in the scientific literature as gaze tracking. This has become a very hot topic in the field of computer vision during the last decades, with a surprising and continuously growing number of application fields. A very long journey has been made from the first pioneering works, and this continuous search for more accurate solutions process has been further boosted in the last decade when deep neural networks have revolutionized the whole machine learning area, and gaze tracking as well.
View Article and Find Full Text PDFInt J Environ Res Public Health
April 2020
Epidemiological figures of the SARS-CoV-2 epidemic in Italy are higher than those observed in China. Our objective was to model the SARS-CoV-2 outbreak progression in Italian regions vs. Lombardy to assess the epidemic's progression.
View Article and Find Full Text PDFDigital holography (DH) has emerged as one of the most effective coherent imaging technologies. The technological developments of digital sensors and optical elements have made DH the primary approach in several research fields, from quantitative phase imaging to optical metrology and 3D display technologies, to name a few. Like many other digital imaging techniques, DH must cope with the issue of speckle artifacts, due to the coherent nature of the required light sources.
View Article and Find Full Text PDFSensors (Basel)
November 2018
In this paper, a computational approach is proposed and put into practice to assess the capability of children having had diagnosed Autism Spectrum Disorders (ASD) to produce facial expressions. The proposed approach is based on computer vision components working on sequence of images acquired by an off-the-shelf camera in unconstrained conditions. Action unit intensities are estimated by analyzing local appearance and then both temporal and geometrical relationships, learned by Convolutional Neural Networks, are exploited to regularize gathered estimates.
View Article and Find Full Text PDF