Spinal cord injury (SCI) damages neural circuits and triggers pro-inflammatory responses, resulting in locomotor impairment. The carbohydrate sulfotransferases GlcNAc6ST1 and GlcNAc6ST4 modulate the function of blood monocytes and microglia. However, their specific roles and enzymatic relationships in neuroinflammation and functional recovery after SCI remain unclear.
View Article and Find Full Text PDFWe compared the efficacy of romosozumab and denosumab in elderly women with primary osteoporosis and knee osteoarthritis in a randomized controlled trial. A total of 112 participants aged 75-90 years were randomized equally into the romosozumab and denosumab groups. Among these, 49 and 52 participants, respectively, who received their initial dose were included in the analysis.
View Article and Find Full Text PDFHere, we present a protocol for describing the generation of a proximal tubule-on-chip model using human induced pluripotent stem cell (hiPSC)-derived kidney organoids for renal transporter analysis. We describe steps for hiPSC differentiation into kidney organoids, proximal tubule cell isolation, and microfluidic chip seeding. The hiPSC-derived model enhances transporter expression and polarization, with improved uptake and efflux functions compared to conventional immortalized cell-based models.
View Article and Find Full Text PDFDrug Metab Pharmacokinet
April 2025
Drug-induced kidney injury (DIKI) is a major cause of acute kidney injury (AKI). Given concerns about animal welfare and the need for more accurate prediction of human events, there is an urgent need to develop an in vitro evaluation method for DIKI using human cells. Renal proximal tubular epithelial cells (RPTECs) are the main targets of DIKI in drug discovery and development because of their abundant expression of drug transporters that contribute to renal-specific drug distribution.
View Article and Find Full Text PDFRenal transporters play critical roles in predicting potential drug-drug interactions. However, current models often fail to adequately express these transporters, particularly solute carrier proteins, including organic anion transporters (OAT1/3), and organic cation transporter 2 (OCT2). Here, we developed a hiPSC-derived kidney organoids-based proximal tubule-on-chip (OPTC) model that emulates renal physiology to assess transporter function.
View Article and Find Full Text PDFDrug Metab Pharmacokinet
August 2024
Nintedanib is used to treat idiopathic pulmonary fibrosis, systemic sclerosis, interstitial lung disease, and progressive fibrotic interstitial lung disease. It is primarily cleared via hepatic metabolism, hydrolysis, and glucuronidation. In addition, formation of the iminium ion, a possible reactive metabolite, was predicted based on the chemical structure of nintedanib.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
July 2024
Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including congenital myasthenic syndromes (CMS). Germline mutations in CHRNE encoding the acetylcholine receptor (AChR) ε subunit are the most common cause of CMS. An active form of vitamin D, calcitriol, binds to vitamin D receptor (VDR) and regulates gene expressions.
View Article and Find Full Text PDFExpert Rev Clin Immunol
May 2024
Introduction: Fatigue and malaise are commonly associated with a wide range of medical conditions, including rheumatoid arthritis (RA). Evidence suggests that fatigue and malaise can be overwhelming for patients, yet these symptoms remain inadequately-managed, largely due to an incomplete elucidation of the underlying causes.
Areas Covered: In this assessment of the published literature relating to the pathogenesis of fatigue or malaise in chronic conditions, four key mechanistic themes were identified.
Drug-drug interactions (DDIs) involving hepatic organic anion transporting polypeptides 1B1/1B3 (OATP1B) can be substantial, however, challenges remain for predicting interaction risk. Emerging evidence suggests that endogenous biomarkers, particularly coproporphyrin-I (CP-I), can be used to assess in vivo OATP1B activity. The present work under the International Consortium for Innovation and Quality in Pharmaceutical Development was aimed primarily at assessing CP-I as a biomarker for informing OATP1B DDI risk.
View Article and Find Full Text PDFEnzymes catalyzing the reduction reaction of xenobiotics are mainly members of the aldo-keto reductase (AKR) and short-chain dehydrogenase/reductase (SDR) superfamilies. The intestine, together with the liver, is responsible for first-pass effects and is an organ that determines the bioavailability of orally administered drugs. In this study, we evaluated the mRNA and protein expression levels of 12 AKR isoforms (AKR1A1, AKR1B1, AKR1B10, AKR1B15, AKR1C1, AKR1C2, AKR1C3, AKR1C4, AKR1D1, AKR1E2, AKR7A2, and AKR7A3) and 7 SDR isoforms (CBR1, CBR3, CBR4, DCXR, DHRS4, HSD11B1, and HSD17B12) in each region of the human intestine using next-generation sequencing and data-independent acquisition proteomics.
View Article and Find Full Text PDFThe proximal tubule plays an important role in the kidney and is a major site of drug interaction and toxicity. Analysis of kidney toxicity via in vitro assays is challenging, because only a few assays that reflect functions of drug transporters in renal proximal tubular epithelial cells (RPTECs) are available. In this study, we aimed to develop a simple and reproducible method for culturing RPTECs by monitoring organic anion transporter 1 (OAT1) as a selection marker.
View Article and Find Full Text PDFTo predict the variation of pharmacological or toxicological effect caused by pharmacokinetic variance, it is important to be able to detect previously unknown and unsuspected enzymes involved in drug metabolism. We investigated the use of proteomic correlation profiling (PCP) as a technique to identify the enzymes involved in metabolism of drugs of concern. By evaluating the metabolic activities of each enzyme (including isoforms of cytochrome P450, uridine 5' diphospho-glucuronosyltransferase, and hydrolases, plus aldehyde oxidase and carbonyl reductase) on their typical substrates using a panel of human liver samples, we were able to show the validity of PCP for this purpose.
View Article and Find Full Text PDFDrug Metab Dispos
June 2023
Nintedanib, which is used to treat idiopathic pulmonary fibrosis and non-small cell lung cancer, is metabolized to a pharmacologically inactive carboxylate derivative, BIBF1202, via hydrolysis and subsequently by glucuronidation to BIBF1202 acyl-glucuronide (BIBF1202-G). Since BIBF1202-G contains an ester bond, it can be hydrolytically cleaved to BIBF1202. In this study, we sought to characterize these metabolic reactions in the human liver and intestine.
View Article and Find Full Text PDFNabumetone, a nonsteroidal anti-inflammatory prodrug, is converted to a pharmacologically active metabolite, 6-methoxy-2-naphthylacetic acid (6-MNA); however, it is 11-fold more efficiently converted to 4-(6-methoxy-2-naphthyl)butan-2-ol (MNBO) via a reduction reaction in human hepatocytes. The goal of this study was to identify the enzyme(s) responsible for MNBO formation from nabumetone in the human liver. MNBO formation by human liver microsomes (HLM) was 5.
View Article and Find Full Text PDFDrug Metab Pharmacokinet
April 2023
P-glycoprotein (P-gp) expression in lymphocytes is variable and 2-fold higher in rheumatoid arthritis (RA) patients with treatment resistance than in healthy subjects. To date the information on P-gp-mediated drug interaction in lymphocyte is limited. We analyzed the importance on P-gp in lymphocytes using peripheral blood mononuclear cells (PBMCs) together with K562, K562/Adr, and K562/Vin cells, which have various P-gp levels, as cell models, and dexamethasone, nintedanib and apafant as weak to good P-gp substrates.
View Article and Find Full Text PDFJ Clin Psychopharmacol
March 2023
Purpose/background: Glycine transporter-1 inhibitors may ameliorate cognitive deficits in schizophrenia. This study evaluated potential drug-drug interactions with the glycine transporter-1 inhibitor BI 425809.
Methods/procedures: Interactions with cytochromes P450 (CYP) and P-glycoprotein (P-gp) were assessed in in vitro assays using human hepatocytes and Caco-2 cells, respectively.
Multidrug and toxin extrusion protein (MATE/SLC47A) secretes metabolites and xenobiotics into the urine in the proximal tubules of the kidney. Uptake assays have been commonly used for evaluating MATE-mediated transport of new chemical entities in drug development. The purpose of this study was to examine the relationship between in vitro uptake activities by MATEs and the impact of MATE-mediated transport in in vivo renal secretion.
View Article and Find Full Text PDFOAT10 (SLC22A13) is a transporter highly expressed in renal tubules and transporting organic anions including nicotinate, β-hydroxybutyrate, p-aminohippurate, and orotate. In transport assays using Xenopus oocytes and HEK293 cells, we found that apparent substrate selectivity of OAT10 was different between the expression systems, particularly less pronounced uptake of β-hydroxybutyrate in HEK293 cells. Because functional coupling between transporters may interfere with functional properties of the transporter, we searched for endogenous transporters in HEK293 cells that could affect OAT10.
View Article and Find Full Text PDFObjectives: To evaluate the long-term safety and efficacy of filgotinib (FIL) for Japanese patients with rheumatoid arthritis (RA) and limited/no prior methotrexate (MTX) exposure. We present a Japanese population subanalysis of a global randomised-controlled trial at Week 52 and interim long-term extension (LTE) to Week 48 through June 2020.
Methods: Patients were randomised to FIL 200 mg plus MTX, FIL 100 mg plus MTX, FIL 200 mg, or MTX for 52 weeks.