Quantitative Analysis of mRNA and Protein Expression Levels of Aldo-Keto Reductase and Short-Chain Dehydrogenase/Reductase Isoforms in the Human Intestine.

Drug Metab Dispos

Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (K.H., T.F., M.N.) and WPI Nano Life Science Institute (T.F., M.N.), Kanazawa University, Kanazawa, Japan; Department of Pharmacokinetics and Nonclinical Safety, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan (H.F., G.M., N.I., W

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Enzymes catalyzing the reduction reaction of xenobiotics are mainly members of the aldo-keto reductase (AKR) and short-chain dehydrogenase/reductase (SDR) superfamilies. The intestine, together with the liver, is responsible for first-pass effects and is an organ that determines the bioavailability of orally administered drugs. In this study, we evaluated the mRNA and protein expression levels of 12 AKR isoforms (AKR1A1, AKR1B1, AKR1B10, AKR1B15, AKR1C1, AKR1C2, AKR1C3, AKR1C4, AKR1D1, AKR1E2, AKR7A2, and AKR7A3) and 7 SDR isoforms (CBR1, CBR3, CBR4, DCXR, DHRS4, HSD11B1, and HSD17B12) in each region of the human intestine using next-generation sequencing and data-independent acquisition proteomics. At both the mRNA and protein levels, most AKR isoforms were highly expressed in the upper regions of the intestine, namely the duodenum and jejunum, and then declined toward the rectum. Among the members in the SDR superfamily, CBR1 and DHRS4 were highly expressed in the upper regions, whereas the expression levels of the other isoforms were almost uniform in all regions. Significant positive correlations between mRNA and protein levels were observed in AKR1A1, AKR1B1, AKR1B10, AKR1C3, AKR7A2, AKR7A3, CBR1, and CBR3. The mRNA level of AKR1B10 was highest, followed by AKR7A3 and CBR1, each accounting for more than 10% of the sum of all AKR and SDR levels in the small intestine. This expression profile in the human intestine was greatly different from that in the human liver, where AKR1C isoforms are predominantly expressed. SIGNIFICANCE STATEMENT: In this study comprehensively determined the mRNA and protein expression profiles of aldo-keto reductase (AKR) and short-chain dehydrogenase/reductase isoforms involved in xenobiotic metabolism in the human intestine and found that most of them are highly expressed in the upper region, where AKR1B10, AKR7A3, and CBR1 are predominantly expressed. Since the intestine is significantly involved in the metabolism of orally administered drugs, the information provided here is valuable for pharmacokinetic studies in drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.123.001402DOI Listing

Publication Analysis

Top Keywords

mrna protein
20
human intestine
16
protein expression
12
expression levels
12
aldo-keto reductase
12
short-chain dehydrogenase/reductase
12
highly expressed
12
expressed upper
12
akr7a3 cbr1
12
dehydrogenase/reductase isoforms
8

Similar Publications

Background: Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease. However, the biological role of mitochondrial metabolism (MM) in COPD remains poorly understood. This study aimed to explore the underlying mechanisms of MM in COPD using bioinformatics methods.

View Article and Find Full Text PDF

was identified in human and mouse Huntington's disease brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 of that contributes to aggregate formation and neuronal dysfunction. Detection of the huntingtin exon 1 protein (HTT1a) has been accomplished with Meso Scale Discovery, Homogeneous Time Resolved Fluorescence and immunoprecipitation assays in Huntington's disease knock-in mice, but direct detection in homogenates by gel electrophoresis and western blot assay has been lacking. Subcellular fractions prepared from mouse and human Huntington's disease brain were separated by gel electrophoresis and probed by western blot with neoepitope monoclonal antibodies 1B12 and 11G2 directed to the C-terminal eight residues of HTT1a.

View Article and Find Full Text PDF

Objective: Sepsis is a common and life-threatening syndrome in intensive care units, frequently accompanied by myocardial dysfunction, which significantly worsens patient outcomes. S100A12, a calcium-binding protein associated with inflammation, is upregulated in various inflammatory conditions. However, its role in sepsis and related cardiac injury remains unclear.

View Article and Find Full Text PDF

Background And Aim: The global demand for sustainable animal protein sources has led to the exploration of insects as alternative feed ingredients. Among these, black soldier fly (BSF) larvae () have demonstrated significant nutritional and functional potential. This study investigated the effects of microwave-dried BSF larvae meal (MDBSFM) on growth performance, intestinal morphology, humoral immune response, and insulin-like growth factor-1 (IGF-1) messenger RNA (mRNA) expression in broiler chickens.

View Article and Find Full Text PDF

Involvement of the PI3K/Nrf2 Pathway in Arsenic-Induced Endocrine and Thyroid Toxicity in Rats.

J Appl Toxicol

September 2025

School of Public Health, Key Laboratory of Special Environmental and Health Research, Xinjiang Medical University, Urumqi, China.

Humans' exposure to arsenic (As) has been associated with the development of various diseases. Some health effects may be mediated by arsenic-induced toxicity to the thyroid and endocrine systems, but its underlying mechanisms remain unclear. The overall aim of our study was focused on using sodium arsenite (NaAsO)-exposed rats to investigate the involvement of the phosphatidylinositol 3-kinase (PI3K) and transcription factor NF-E2-related factor 2 (Nrf2) pathways in toxicity to the thyroid and endocrine systems.

View Article and Find Full Text PDF