98%
921
2 minutes
20
To predict the variation of pharmacological or toxicological effect caused by pharmacokinetic variance, it is important to be able to detect previously unknown and unsuspected enzymes involved in drug metabolism. We investigated the use of proteomic correlation profiling (PCP) as a technique to identify the enzymes involved in metabolism of drugs of concern. By evaluating the metabolic activities of each enzyme (including isoforms of cytochrome P450, uridine 5' diphospho-glucuronosyltransferase, and hydrolases, plus aldehyde oxidase and carbonyl reductase) on their typical substrates using a panel of human liver samples, we were able to show the validity of PCP for this purpose. or s and values were calculated for the association between the protein abundance profile of each protein and the metabolic rate profile of each typical substrate. For the 18 enzymatic activities examined, 13 of the enzymes reported to be responsible for the reactions had correlation coefficients higher than 0.7 and were ranked first to third. For the remaining five activities, the responsible enzymes had correlation coefficients lower than 0.7 and lower rankings. The reasons for this were diverse, including confounding resulting from low protein abundance ratios, artificially high correlations of other enzymes due to limited sample numbers, the presence of inactive enzyme forms, and genetic polymorphisms. Overall, PCP was able to identify the majority of responsible drug-metabolizing enzymes across several enzyme classes (oxidoreductase, transferase, hydrolase); use of this methodology could allow more timely and accurate identification of unknown drug-metabolizing enzymes. SIGNIFICANCE STATEMENT: Proteomic correlation profiling using samples from individual human donors was proven to be a useful methodology for the identification of enzymes responsible for drug-metabolism. This methodology could accelerate the identification of unknown drug-metabolizing enzymes in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/dmd.122.001198 | DOI Listing |
Cell Death Dis
September 2025
Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
In recent years, there has been a rapid increase in the incidence of thyroid carcinoma (TC). Our study focuses on the regulatory effect of circular RNAs on metabolism of TC, aiming to provide new insights into the mechanisms of progression and a potential therapeutic target for TC. In this study, we identified high expression levels of circPSD3 in TC tissues through RNA sequencing.
View Article and Find Full Text PDFExp Cell Res
September 2025
Cancer Biology Laboratory, Dept of Life Sciences, GITAM School of Sciences, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India. Electronic address:
CD151 is a tetraspanin, abnormally expressed in triple negative breast cancer (TNBC). It is a prominent component of exosomes, facilitating the secretion of proteins that promote metastasis and drug resistance. We have previously demonstrated that silencing the CD151 gene reduces metastasis in TNBC.
View Article and Find Full Text PDFLung Cancer
September 2025
Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, Japan; Division of Next-Generation Drug Development Research, Research Center for Medical Sciences, The Jikei University School of Medicine, 3-25-8 Ni
Background: The risk factors associated with treatment resistance to consolidation durvalumab following chemoradiotherapy (CRT) for locally advanced non-small cell lung cancer (NSCLC) have not been well established.
Methods: Extracellular vesicles (EVs) were isolated from the pretreatment serum of 73 patients treated with consolidation durvalumab. Isolation was performed using CD9/CD63 antibodies, and EV proteins were identified using liquid chromatography-tandem mass spectrometry (LC-MS).
JCI Insight
September 2025
Department of Pharmacology, University of Michigan, Ann Arbor, United States of America.
Cardiac hypertrophy is a common adaptation to cardiovascular stress and often a prelude to heart failure. We examined how S-palmitoylation of the small GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), impacts cardiomyocyte stress signaling. Mutation of the cysteine-178 palmitoylation site impaired activation of Rac1 when overexpressed in cardiomyocytes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.
MS4A4A belongs to the MS4A tetraspan protein superfamily and is selectively expressed by the monocyte-macrophage lineage. In this study, we aimed to evaluate the role of MS4A4A+ macrophages in rheumatoid arthritis (RA) pathogenesis and response to treatment. RNA sequencing and immunohistochemistry of synovial samples from either early treatment-naïve or active chronic RA patients showed that MS4A4A expression positively correlated with synovial inflammation.
View Article and Find Full Text PDF