This research addresses the soot emission challenges of conventional internal combustion engines by incorporating Fe-based metal-organic frameworks (Fe-MOFs) into alcohol-based fuel. In a constant volume combustion chamber, optical diagnostic methods were employed to examine the spray properties, combustion dynamics, and emission profiles of fuel mixtures with Fe-MOFs concentrations of 20 ppm, 40 ppm, and 60 ppm. Additionally, a BO-GPR algorithm was employed to predict emission outcomes.
View Article and Find Full Text PDFWith the global emphasis on environmental protection and increasingly stringent emission regulations for internal combustion engines, there is an urgent need to overcome the problem of large hydrocarbon (HC) emissions caused by unstable engine cold starts. Synergistic engine pre-treatment (reducing hydrocarbon production) as well as after-treatment devices (adsorbing and oxidizing hydrocarbons) is the fundamental solution to emissions. In this paper, the improvement of hydrocarbon emissions is summarized from two aspects: pre-treatment and after-treatment.
View Article and Find Full Text PDFSurgical skill assessment can quantify the quality of the surgical operation via the motion state of the surgical instrument tip (SIT), which is considered one of the effective primary means by which to improve the accuracy of surgical operation. Traditional methods have displayed promising results in skill assessment. However, this success is predicated on the SIT sensors, making these approaches impractical when employing the minimally invasive surgical robot with such a tiny end size.
View Article and Find Full Text PDFBackground: The tendon-sheath-system (TSS) is an excellent medium for remote power transmission, which is widely used in laparoscopic surgery robots. Since the operation process requires the robot to move continuously, this time-varying characteristic further aggravates the force and position transmission loss caused by the nonlinear friction of TSS, which affects the control accuracy of the surgical robot.
Method: A time-varying tendon-sheath transmission model (RT model) is proposed.
Proc Inst Mech Eng H
April 2023
The inaccurate force and position control of tendon sheath system (TSS) due to nonlinear friction during surgery seriously hinders its development in the field of precision surgical robots. To this end, this paper proposes a time-varying bending angle estimation method under the state of sensorless offline identification combined with robot kinematics by analyzing the friction of the TSS and the deformation of the robot during the movement, and establishes a force and position transfer model with time-varying path trajectory (SJM model). The model uses B-spline curve to fit tendon-sheath trajectory.
View Article and Find Full Text PDFBioengineering (Basel)
February 2023
Background: Medical image processing tasks represented by multi-object segmentation are of great significance for surgical planning, robot-assisted surgery, and surgical safety. However, the exceptionally low contrast among tissues and limited available annotated data makes developing an automatic segmentation algorithm for pelvic CT challenging.
Methods: A bi-direction constrained dual-task consistency model named PICT is proposed to improve segmentation quality by leveraging free unlabeled data.
Int J Med Robot
April 2023
Background: Robot-assisted pelvic fracture closed reduction (RPFCR) positively contributes to patient treatment. However, the current path planning suffers from incomplete obstacle avoidance and long paths.
Method: A collision detection method is proposed for applications in the pelvic environment to improve the safety of RPFCR surgery.
Sci Total Environ
December 2021
Particle is the main pollutant in diesel engine exhaust, which seriously endangers human health and the atmospheric environment. The use of alcohol fuels in diesel engines can effectively reduce particle emissions, but alcohol fuels with different carbon chain lengths will affect the generation process of particles, which in turn changes the physicochemical properties and oxidation characteristics of the particles. Therefore, it is particularly important to study the properties of particle emitted by diesel engines fueling alcohol fuels with different carbon chain lengths.
View Article and Find Full Text PDFDimethoxymethane (DMM)-diesel blended fuels can simultaneously reduce exhaust emissions of soot and nitrogen oxide (NO); several studies have been conducted in this regard. However, the influence of additive DMM on the production of inception and precursors of particulates, especially the relation between oxidation, morphology, and the nanostructure of soot particles has not been extensively investigated. In this study, a transmission electron microscope (TEM) and a thermogravimetric analyzer are introduced to acquire TEM images and conduct temperature-programmed-oxidation experiments.
View Article and Find Full Text PDF