Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Robot-assisted pelvic fracture closed reduction (RPFCR) positively contributes to patient treatment. However, the current path planning suffers from incomplete obstacle avoidance and long paths.

Method: A collision detection method is proposed for applications in the pelvic environment to improve the safety of RPFCR surgery. Meanwhile, a defined orientation planning strategy (OPS) and linear sampling search (LSS) are coupled into the A* algorithm to optimise the reduction path. Subsequently, pelvic in vitro experimental platform is built to verify the augmented A*algorithm's feasibility.

Results: The augmented A* algorithm planned the shortest path for the same fracture model, and the paths planned by the A* algorithm and experience-based increased by 56.12% and 89.02%, respectively.

Conclusions: The augmented A* algorithm effectively improves surgical safety and shortens the path length, which can be adopted as an effective model for developing RPFCR path planning.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcs.2483DOI Listing

Publication Analysis

Top Keywords

path planning
12
robot-assisted pelvic
8
pelvic fracture
8
fracture closed
8
closed reduction
8
augmented algorithm
8
path
5
autonomous path
4
planning
4
planning robot-assisted
4

Similar Publications

Multi-arm rock drilling robots frequently encounter challenges in extreme environments, such as tunnels, where they are subjected to high-frequency impact loads, multi-degree-of-freedom motion coupling, and large-range motion control vibrations. First, we propose a collision-free path planning method that combines an improved genetic algorithm (IGA) and an improved artificial potential field method. This method is based on the kinematic model of the rock drilling robot.

View Article and Find Full Text PDF

Objectives: Waterpipe smoking is increasingly becoming a public health threat due to its appealing features and misperceptions of its harmful effects. Tools assessing waterpipe addiction are essential for understanding waterpipe smokers' behaviors and designing effective smoking cessation plans. This study aimed to develop and validate the Waterpipe Addiction, Craving, and Anticipation Scale (WACAS) and describe the specific patterns and multidimensional aspects of waterpipe smoking behavior.

View Article and Find Full Text PDF

Predicting career trajectories is a complex yet impactful task, offering significant benefits for personalized career counseling, recruitment optimization, and workforce planning. However, effective career path prediction (CPP) modeling faces challenges including highly variable career trajectories, free-text resume data, and limited publicly available benchmark datasets. In this study, we present a comprehensive comparative evaluation of CPP models-linear projection, multilayer perceptron (MLP), LSTM, and large language models (LLMs)-across multiple input settings and two recently introduced public datasets.

View Article and Find Full Text PDF

Background: Dose-driven continuous scanning (DDCS) enhances the efficiency and precision of proton pencil beam delivery by reducing beam pauses inherent in discrete spot scanning (DSS). However, current DDCS optimization studies using traveling salesman problem (TSP) formulations often rely on fixed beam intensity and computationally expensive interpolation for move spot generation, limiting efficiency and methodological robustness.

Purpose: This study introduces a Break Spot-Guided (BSG) method, combined with two acceleration strategies-dose rate skipping and bounding-to optimize beam intensity while minimizing beam delivery time (BDT).

View Article and Find Full Text PDF

Traditional path planning algorithms often face problems such as local optimum traps and low monitoring efficiency in agricultural UAV operations, making it difficult to meet the operational requirements of complex environments in modern precision agriculture. Therefore, there is an urgent need to develop an intelligent path planning algorithm. To address this issue, this study proposes an improved Informed-RRT* path planning algorithm guided by domain-partitioned A* algorithm.

View Article and Find Full Text PDF