The development of biomaterials that enhance bone healing and integrate with native bone tissue has gained significant interest. Metal-organic frameworks (MOFs) have emerged as promising candidates due to their unique surface properties and biocompatibility. While various bioactive element-incorporated MOFs have been studied, the osteogenic potential of lithium (Li)-modified MOFs remains largely unexplored.
View Article and Find Full Text PDFA comprehensive set of single-component and binary isotherms were collected for ethanol/water adsorption into the siliceous forms of 185 known zeolites using grand-canonical Monte Carlo simulations. Using these data, a systematic analysis of ideal/real adsorbed-solution theory (IAST/RAST) was conducted and activity coefficients were derived for ethanol/water mixtures adsorbed in different zeolites based on RAST. It was found that activity coefficients of ethanol are close to unity while activity coefficients of water are larger in most zeolites, indicating a positive excess free energy of the mixture.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
We report an X-ray radiation-induced modification of the structure and gas permeation behavior of ZIF-8 membranes. With 300 min irradiation time, CO permeance decreases by only 9 %, while N and CH permeances reduce by 75 and 65 %, respectively, leading to 3.7- and 2.
View Article and Find Full Text PDFD-Glucose-to-L-sorbose isomerization on Lewis acidic zeolite is a highly attractive avenue for sorbose production. But the L-sorbose yield is limited by the competing D-glucose-to-D-fructose isomerization and reaction equilibrium. In this work, it is suggested that ethanol directs the glucose conformation for selective D-glucose-to-L-sorbose isomerization.
View Article and Find Full Text PDFZeolitic imidazolate framework (ZIF-8) is a promising material for gas separation applications. It also serves as a prototype for numerous ZIFs, including amorphous ones, with a broader range of possible applications, including sensors, catalysis, and lithography. It consists of zinc coordinated with 2-methylimidazolate (2mIm) and has been synthesized with methods ranging from liquid-phase to solvent-free synthesis, which aim to control its crystal size and shape, film thickness and microstructure, and incorporation into nanocomposites.
View Article and Find Full Text PDFNat Mater
November 2023
Zeolitic imidazolate frameworks (ZIFs) are a subset of metal-organic frameworks with more than 200 characterized crystalline and amorphous networks made of divalent transition metal centres (for example, Zn and Co) linked by imidazolate linkers. ZIF thin films have been intensively pursued, motivated by the desire to prepare membranes for selective gas and liquid separations. To achieve membranes with high throughput, as in ångström-scale biological channels with nanometre-scale path lengths, ZIF films with the minimum possible thickness-down to just one unit cell-are highly desired.
View Article and Find Full Text PDFIt is shown that Machine Learning (ML) algorithms can usefully capture the effect of crystallization composition and conditions (inputs) on key microstructural characteristics (outputs) of faujasite type zeolites (structure types FAU, EMT, and their intergrowths), which are widely used zeolite catalysts and adsorbents. The utility of ML (in particular, Geometric Harmonics) toward learning input-output relationships of interest is demonstrated, and a comparison with Neural Networks and Gaussian Process Regression, as alternative approaches, is provided. Through ML, synthesis conditions were identified to enhance the Si/Al ratio of high purity FAU zeolite to the hitherto highest level (i.
View Article and Find Full Text PDFWith increasing demands for high-performance water sorption materials, metal-organic frameworks (MOFs) have gained considerable attention due to their high maximum uptake capacities. In many cases, however, high overall capacity is not necessarily accomplishing high working capacity under operating conditions, due to insufficient hydrophilicity and/or water stability. Herein, we present a post-synthetic modification (PSM) of MOF-808, with di-sulfonic acids enhancing simultaneously its hydrophilicity and water stability without sacrificing its uptake capacity of ≈30 mmol g .
View Article and Find Full Text PDFBioconjug Chem
November 2022
In this work, we demonstrate the formation of supramolecular architectures from the assembly of single-tail single stranded DNA (ssDNA)-amphiphiles. Short ssDNA sequences of 10 nucleotides that were either unstructured or formed G-quadruplex secondary structures were conjugated to a single 4-(hexadecyloxy)benzamide tail, either directly or through a polycarbon (C) spacer. Conjugation of the ssDNA to the tail did not interfere with the G-quadruplex secondary structure of the ssDNA sequence.
View Article and Find Full Text PDFAnnu Rev Chem Biomol Eng
June 2022
In the last decade, zeolitic imidazolate frameworks (ZIFs) have been studied extensively for their potential as selective separation membranes. In this review, we highlight unique structural properties of ZIFs that allow them to achieve certain important separations, like that of propylene from propane, and summarize the state of the art in ZIF thin-film deposition on porous substrates and their modification by postsynthesis treatments. We also review the reported membrane performance for representative membrane synthesis approaches and attempt to rank the synthesis methods with respect to potential for scalability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2022
Surface characterization is critical for understanding the processes used for preparing catalysts, sorbents, and membranes. Nonthermal plasma (NTP) is a process that achieves high reactivity at low temperatures and is used to tailor the surface properties of materials. In this work, we combine the capabilities of infrared reflection absorption spectroscopy (IRRAS) with NTP for the interrogation of zeolitic imidazolate framework-8 (ZIF-8) thin films to probe modifications in the material induced by oxygen and nitrogen plasmas.
View Article and Find Full Text PDFZeolite nanosheets can be used for the fabrication of low-defect-density, thin, and oriented zeolite separation membranes. However, methods for manipulating their morphology are limited, hindering progress toward improved performance. We report the direct synthesis (i.
View Article and Find Full Text PDFA DNA-based artificial metalloenzyme (ArM) consisting of a copper(II) complex of 4,4'-dimethyl-2,2'-bipyridine (dmbipy-Cu) bound to double-stranded DNA (dsDNA) as short as 8 base pairs with only 2 contiguous central pairs (G for guanine and C for cytosine) catalyzes the highly enantioselective Diels-Alder reaction, Michael addition, and Friedel-Crafts alkylation in water. Molecular simulations indicate that these minimal sequences provide a single site where dmbipy-Cu is groove-bound and able to function as an enantioselective catalyst. Enantioselective preference inverts when d-DNA is replaced with l-DNA.
View Article and Find Full Text PDFPatterning metal-organic frameworks (MOFs) at submicrometer scale is a crucial yet challenging task for their integration in miniaturized devices. Here we report an electron beam (e-beam) assisted, bottom-up approach for patterning of two MOFs, zeolitic imidazolate frameworks (ZIF), ZIF-8 and ZIF-67. A mild pretreatment of metal oxide precursors with linker vapor leads to the sensitization of the oxide surface to e-beam irradiation, effectively inhibiting subsequent conversion of the oxide to ZIFs in irradiated areas, while ZIF growth in non-irradiated areas is not affected.
View Article and Find Full Text PDFHierarchical zeolites containing both micro- (<2 nm) and mesopores (2-50 nm) have gained increasing attention in recent years because they combine the intrinsic properties of conventional zeolites with enhanced mass transport rates due to the presence of mesopores. The structure of the hierarchical self-pillared pentasil (SPP) zeolite is of interest because all-silica SPP consists of orthogonally intergrown single-unit-cell MFI nanosheets and contains hydrophilic surface silanol groups on the mesopore surface while its micropores are nominally hydrophobic. Therefore, the distribution of adsorbed polar molecules, like water and ethanol, in the meso- and micropores is of fundamental interest.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2022
Faujasite (FAU) zeolites (with Si/Al ratio of ca. 1.7) undergo mild dealumination at moderate ion exchange conditions (0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2021
Synthesis of a pentasil-type zeolite with ultra-small few-unit-cell crystalline domains, which we call FDP (few-unit-cell crystalline domain pentasil), is reported. FDP is made using bis-1,5(tributyl ammonium) pentamethylene cations as structure directing agent (SDA). This di-quaternary ammonium SDA combines butyl ammonium, in place of the one commonly used for MFI synthesis, propyl ammonium, and a five-carbon nitrogen-connecting chain, in place of the six-carbon connecting chain SDAs that are known to fit well within the MFI pores.
View Article and Find Full Text PDFChem Commun (Camb)
May 2021
Modification of the gas permeation properties of ZIF-8 membranes using electron beam irradiation is reported. 3.8 and 3.
View Article and Find Full Text PDFPhosphorus-modified siliceous zeolites, or P-zeosils, catalyze the selective dehydration of biomass derivatives to platform chemicals such as xylene and 1,3-butadiene. Water generated during these reactions is a critical factor in catalytic activity, but the effects of hydrolysis on the structure, acidity, and distribution of the active sites are largely unknown. In this study, the P-sites in an all-silica self-pillared pentasil (P-SPP) with a low P-loading (Si/P = 27) were identified by solid-state P NMR using frequency-selective detection.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2021
Vapor-phase treatment of ZIF-8 membranes with manganese(II) acetylacetonate (Mn(acac) ) allows permselectivity tuning. Propylene/propane selectivity increases from 31 to 210 after the Mn(acac) treatment at 165 °C for 30 min, while selectivities increase from 14.6 to 242 for H /CH , from 2.
View Article and Find Full Text PDFNanosheet-based MFI membranes, known to be highly selective for hydrocarbon isomer separations, exhibit an NH3/N2 mixture separation factor of 2236 with NH3 permeance of 1.1 × 10-6 mol m-2 s-1 Pa-1, and NH3/H2 separation factor of 307 with NH3 permeance of 2.3 × 10-6 mol m-2 s-1 Pa-1 at room temperature.
View Article and Find Full Text PDFChem Commun (Camb)
October 2020
A dense zeolite layer with a thickness of approximately 500 nm was demonstrated by a confined-space strategy in a sandwiched mode of (SiO2)/(silicalite-1)/(SiO2). The gel-free secondary growth methodology bypasses the post-calcination step, avoiding excess energy consumption and possible film damage. Significantly enhanced pervaporation separation was observed with separation factors of 136 and 113, and fluxes of 2.
View Article and Find Full Text PDFThis work describes the design and implementation of an automated device for catalytic materials testing by direct modifications to a gas chromatograph (GC). The setup can be operated as a plug-flow isothermal reactor and enables the control of relevant parameters such as reaction temperature and reactant partial pressures directly from the GC. High-quality kinetic data (including reaction rates, product distributions, and activation barriers) can be obtained at almost one-tenth of the fabrication cost of analogous commercial setups.
View Article and Find Full Text PDFA challenge in the synthesis of single-wall carbon nanotubes (SWCNTs) is the lack of control over the formation and evolution of catalyst nanoparticles and the lack of control over their size or chirality. Here, zeolite MFI nanosheets (MFI-Ns) are used to keep cobalt (Co) nanoparticles stable during prolonged annealing conditions. Environmental transmission electron microscopy (ETEM) shows that the MFI-Ns can influence the size and shape of nanoparticles via particle/support registry, which leads to the preferential docking of nanoparticles to four or fewer pores and to the regulation of the SWCNT synthesis products.
View Article and Find Full Text PDF