Publications by authors named "Michael R Culbertson"

Nonsense-mediated mRNA decay (NMD) causes accelerated transcript degradation when a premature translation termination codon disrupts the open reading frame (ORF). Although endogenous transcripts that have uninterrupted ORFs are typically insensitive to NMD, some can nonetheless become prone to NMD when translation terminates at out-of-frame premature stop codons. This occurs when introns containing stop codons fail to be spliced, when translation of an upstream ORF (uORF) terminates in the 5'-untranslated region (5'-UTR) or the coding region, or when the 5'-proximal AUG initiation codon is bypassed and translation initiates at a downstream out-of-frame AUG followed by a stop codon.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae SEN1 gene codes for a nuclear, ATP-dependent helicase which is embedded in a complex network of protein-protein interactions. Pleiotropic phenotypes of mutations in SEN1 suggest that Sen1 functions in many nuclear processes, including transcription termination, DNA repair, and RNA processing. Sen1, along with termination factors Nrd1 and Nab3, is required for the termination of noncoding RNA transcripts, but Sen1 is associated during transcription with coding and noncoding genes.

View Article and Find Full Text PDF

The UL97 protein of human cytomegalovirus (HCMV, or HHV-5 (human herpesvirus 5)), is a kinase that phosphorylates the cellular retinoblastoma (Rb) tumor suppressor and lamin A/C proteins that are also substrates of cellular cyclin-dependent kinases (Cdks). A functional complementation assay has further shown that UL97 has authentic Cdk-like activity. The other seven human herpesviruses each encode a kinase with sequence and positional homology to UL97.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae SEN1 gene codes for a nuclear-localized superfamily I helicase. SEN1 is an ortholog of human SETX (senataxin), which has been implicated in the neurological disorders ataxia-ocular apraxia type 2 and juvenile amyotrophic lateral sclerosis. Pleiotropic phenotypes conferred by sen1 mutations suggest that Sen1p affects multiple steps in gene expression.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) performs two functions in eukaryotes, one in controlling the expression level of a substantial subset of genes and the other in RNA surveillance. In the vast majority of genes, nonsense mutations render the corresponding transcripts prone to surveillance and subject to rapid degradation by NMD. To examine whether some classes of nonsense transcripts escape surveillance, we asked whether NMD acts on mRNAs that undergo subcellular localization prior to translation.

View Article and Find Full Text PDF

As obligate intracellular parasites, viruses expertly modify cellular processes to facilitate their replication and spread, often by encoding genes that mimic the functions of cellular proteins while lacking regulatory features that modify their activity. We show that the human cytomegalovirus UL97 protein has activities similar to cellular cyclin-cyclin-dependent kinase (CDK) complexes. UL97 phosphorylated and inactivated the retinoblastoma tumor suppressor, stimulated cell cycle progression in mammalian cells, and rescued proliferation of Saccharomyces cerevisiae lacking CDK activity.

View Article and Find Full Text PDF

Rpb1p, the largest subunit of S. cerevisiae RNA polymerase II, contains a repetitive structure called the C-terminal domain (CTD). The CTD serves as a scaffold for the regulated association and dissociation of more than a hundred proteins involved in RNA synthesis.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is a eukaryotic mechanism of RNA surveillance that selectively eliminates aberrant transcripts coding for potentially deleterious proteins. NMD also functions in the normal repertoire of gene expression. In Saccharomyces cerevisiae, hundreds of endogenous RNA Polymerase II transcripts achieve steady-state levels that depend on NMD.

View Article and Find Full Text PDF

Mutations in EBS1 were identified in Saccharomyces cerevisiae that cosuppress missense, frameshift, and nonsense mutations. Evidence from studies of loss of function and overexpression of EBS1 suggests that Ebs1p affects gene expression by inhibiting translation and that a loss of EBS1 function causes suppression by increasing the rate of translation. Changes in EBS1 expression levels alter the expression of wild-type genes, but, in general, no changes in mRNA abundance were associated with a loss of function or overexpression of EBS1.

View Article and Find Full Text PDF

In Saccharomyces cerevisiae, nonsense-mediated mRNA decay (NMD) requires Upf1p, Upf2p, and Upf3p to accelerate the decay rate of two unique classes of transcripts: (1) nonsense mRNAs that arise through errors in gene expression, and (2) naturally occurring transcripts that lack coding errors but have built-in features that target them for accelerated decay (error-free mRNAs). NMD can trigger decay during any round of translation and can target Cbc-bound or eIF-4E-bound transcripts. Extremely low concentrations of the Upf proteins relative to the total pool of transcripts make it difficult to understand how nonsense transcripts are selectively recruited.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists created a way to study a special part of a yeast protein called Upf3p, which helps break down faulty RNA messages in cells.
  • They tested if this special part was similar to another part found in proteins that help send things out of the cell by making changes to the protein's code.
  • The results showed that changes to this part of the Upf3p protein made it harder for the protein to work correctly, which is important for its job in helping the cell.
View Article and Find Full Text PDF

Sen1p in Saccharomyces cerevisiae is a Type I DNA/RNA helicase. Mutations in the helicase domain perturb accumulation of diverse RNA classes, and Sen1p has been implicated in 3' end formation of non-coding RNAs. Using a combination of global and candidate-specific two hybrid screens, eight proteins were identified that interact with Sen1p.

View Article and Find Full Text PDF

In eukaryotes, mRNAs are monitored for errors in gene expression by RNA surveillance where untranslatable mRNAs are selectively degraded by the nonsense-mediated mRNA decay (NMD) pathway. Depending on the organism, three to seven genes are required for NMD. Besides RNA surveillance, the genes required for NMD serve a second purpose by controlling the overall abundance of a substantial fraction of the transcriptome.

View Article and Find Full Text PDF

Telomeres, the chromosome ends, are maintained by a balance of activities that erode and replace the terminal DNA sequences. Furthermore, telomere-proximal genes are often silenced in an epigenetic manner. In Saccharomyces cerevisiae, average telomere length and telomeric silencing are reduced by loss of function of UPF genes required in the nonsense-mediated mRNA decay (NMD) pathway.

View Article and Find Full Text PDF

Upf3p, which is required for nonsense-mediated mRNA decay (NMD) in yeast, is primarily cytoplasmic but accumulates inside the nucleus when UPF3 is overexpressed or when upf3 mutations prevent nuclear export. Upf3p physically interacts with Srp1p (importin-alpha). Upf3p fails to be imported into the nucleus in a temperature-sensitive srp1-31 strain, indicating that nuclear import is mediated by the importin-alpha/beta heterodimer.

View Article and Find Full Text PDF