Helminths infect humans, livestock, and wildlife, yet remain understudied despite their significant impact on public health and agriculture. Because many of the most prevalent helminth-borne diseases are zoonotic, understanding helminth transmission among wildlife could improve predictions and management of infection risks across species. A key challenge to understanding helminth transmission dynamics in wildlife is accurately and quantitatively tracking parasite load across hosts and environments.
View Article and Find Full Text PDFGlobal loss of honey bee colonies is threatening the human food supply. Diverse pathogens reduce honey bee hardiness needed to sustain colonies, especially in winter. We isolated a free-living Gram negative bacillus from hemolymph of worker honey bees (Apis mellifera) found separated from winter clusters.
View Article and Find Full Text PDFBackground: The broad ecological distribution of L. casei makes it an insightful subject for research on genome evolution and lifestyle adaptation. To explore evolutionary mechanisms that determine genomic diversity of L.
View Article and Find Full Text PDFThe Comprehensive Phytopathogen Genomics Resource (CPGR) provides a web-based portal for plant pathologists and diagnosticians to view the genome and trancriptome sequence status of 806 bacterial, fungal, oomycete, nematode, viral and viroid plant pathogens. Tools are available to search and analyze annotated genome sequences of 74 bacterial, fungal and oomycete pathogens. Oomycete and fungal genomes are obtained directly from GenBank, whereas bacterial genome sequences are downloaded from the A Systematic Annotation Package (ASAP) database that provides curation of genomes using comparative approaches.
View Article and Find Full Text PDFEnviron Microbiol
June 2010
Pseudomonas savastanoi pv. savastanoi is a tumour-inducing pathogen of Olea europaea L. causing olive knot disease.
View Article and Find Full Text PDFERIC, the Enteropathogen Resource Integration Center (www.ericbrc.org), is a new web portal serving as a rich source of information about enterobacteria on the NIAID established list of Select Agents related to biodefense-diarrheagenic Escherichia coli, Shigella spp.
View Article and Find Full Text PDFERIC (Enteropathogen Resource Information Center) is one of the National Institute of Allergy and Infectious Diseases (NIAID) Bioinformatics Resource Centers for Biodefense and Emerging/Re-emerging Infectious Disease. ERIC serves as a comprehensive information resource for five related pathogens: Yersinia enterocolitica, Yersinia pestis, diarrheagenic E. coli, Shigella spp.
View Article and Find Full Text PDFMutations in EBS1 were identified in Saccharomyces cerevisiae that cosuppress missense, frameshift, and nonsense mutations. Evidence from studies of loss of function and overexpression of EBS1 suggests that Ebs1p affects gene expression by inhibiting translation and that a loss of EBS1 function causes suppression by increasing the rate of translation. Changes in EBS1 expression levels alter the expression of wild-type genes, but, in general, no changes in mRNA abundance were associated with a loss of function or overexpression of EBS1.
View Article and Find Full Text PDFIn Saccharomyces cerevisiae, nonsense-mediated mRNA decay (NMD) requires Upf1p, Upf2p, and Upf3p to accelerate the decay rate of two unique classes of transcripts: (1) nonsense mRNAs that arise through errors in gene expression, and (2) naturally occurring transcripts that lack coding errors but have built-in features that target them for accelerated decay (error-free mRNAs). NMD can trigger decay during any round of translation and can target Cbc-bound or eIF-4E-bound transcripts. Extremely low concentrations of the Upf proteins relative to the total pool of transcripts make it difficult to understand how nonsense transcripts are selectively recruited.
View Article and Find Full Text PDF