Publications by authors named "Jonathan S Finkel"

To colonize and infect the host, arthroconidial yeasts must avoid being killed by the host's defenses. The formation of biofilms on implanted devices allows fungi to avoid host responses and to disseminate into the host. To better study the mechanisms of infection by arthroconidial yeasts, adherence and biofilm formation were assayed using patient samples collected over 10 years.

View Article and Find Full Text PDF

Microbacteriophages Zada and Ioannes were isolated from soil and characterized. Genomes were then sequenced and annotated. This was done using the host bacterium Zada and Ioannes are both lytic phages with a morphotype.

View Article and Find Full Text PDF

Mycobacteriophages Darionha, Salz, and ThreeRngTarjay are mycobacteriophages isolated using the host mc155. Following isolation from soil samples, all three siphoviridae phages were characterized, and their genomes were sequenced and annotated.

View Article and Find Full Text PDF

With over 1 billion infections and the causative agents showing critical diseases such as pancreatic cancer, the study of pathogenic fungi has never been more critical. In 2017, the United States spent $7.2 billion on fungal diseases.

View Article and Find Full Text PDF

Fungal biofilms are heterogeneous, surface-associated colonies comprised of filamentous hyphae (chains of elongated cells), pseudohyphal cells, yeast-form cells, and various forms of extracellular matrix. When grown on a substratum under liquid culture medium, the microbial fungus Candida albicans forms dense biofilms that range in thickness from 100 to 600μm. Apical hyphae in the medium and invasive hyphae in the substratum may add greatly to the thickness and complexity of the biofilm.

View Article and Find Full Text PDF

Objectives: We identified Candida spp isolated from lower respiratory tract secretions obtained from cystic fibrosis (CF) patients, by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), with the aim of determining the most prevalent causative agent. We also sought to determine their adhesive properties in order to understand their biology related to CF.

Methods: Twenty-five clinical samples were collected from a cohort of 20 CF patients.

View Article and Find Full Text PDF

In order to colonize the host and cause disease, Candida albicans must avoid being killed by host defense peptides. Previously, we determined that the regulatory protein Ssd1 governs antimicrobial peptide resistance in C. albicans.

View Article and Find Full Text PDF

Cell-substrate adherence is a fundamental property of microorganisms that enables them to exist in biofilms. Our study focuses on adherence of the fungal pathogen Candida albicans to one substrate, silicone, that is relevant to device-associated infection. We conducted a mutant screen with a quantitative flow-cell assay to identify thirty transcription factors that are required for adherence.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae SEN1 gene codes for a nuclear, ATP-dependent helicase which is embedded in a complex network of protein-protein interactions. Pleiotropic phenotypes of mutations in SEN1 suggest that Sen1 functions in many nuclear processes, including transcription termination, DNA repair, and RNA processing. Sen1, along with termination factors Nrd1 and Nab3, is required for the termination of noncoding RNA transcripts, but Sen1 is associated during transcription with coding and noncoding genes.

View Article and Find Full Text PDF

Candida species cause frequent infections owing to their ability to form biofilms - surface-associated microbial communities - primarily on implanted medical devices. Increasingly, mechanistic studies have identified the gene products that participate directly in the development of Candida albicans biofilms, as well as the regulatory circuitry and networks that control their expression and activity. These studies have uncovered new mechanisms and signals that govern C.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae SEN1 gene codes for a nuclear-localized superfamily I helicase. SEN1 is an ortholog of human SETX (senataxin), which has been implicated in the neurological disorders ataxia-ocular apraxia type 2 and juvenile amyotrophic lateral sclerosis. Pleiotropic phenotypes conferred by sen1 mutations suggest that Sen1p affects multiple steps in gene expression.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) performs two functions in eukaryotes, one in controlling the expression level of a substantial subset of genes and the other in RNA surveillance. In the vast majority of genes, nonsense mutations render the corresponding transcripts prone to surveillance and subject to rapid degradation by NMD. To examine whether some classes of nonsense transcripts escape surveillance, we asked whether NMD acts on mRNAs that undergo subcellular localization prior to translation.

View Article and Find Full Text PDF

As obligate intracellular parasites, viruses expertly modify cellular processes to facilitate their replication and spread, often by encoding genes that mimic the functions of cellular proteins while lacking regulatory features that modify their activity. We show that the human cytomegalovirus UL97 protein has activities similar to cellular cyclin-cyclin-dependent kinase (CDK) complexes. UL97 phosphorylated and inactivated the retinoblastoma tumor suppressor, stimulated cell cycle progression in mammalian cells, and rescued proliferation of Saccharomyces cerevisiae lacking CDK activity.

View Article and Find Full Text PDF

Rpb1p, the largest subunit of S. cerevisiae RNA polymerase II, contains a repetitive structure called the C-terminal domain (CTD). The CTD serves as a scaffold for the regulated association and dissociation of more than a hundred proteins involved in RNA synthesis.

View Article and Find Full Text PDF

Sen1p in Saccharomyces cerevisiae is a Type I DNA/RNA helicase. Mutations in the helicase domain perturb accumulation of diverse RNA classes, and Sen1p has been implicated in 3' end formation of non-coding RNAs. Using a combination of global and candidate-specific two hybrid screens, eight proteins were identified that interact with Sen1p.

View Article and Find Full Text PDF