Publications by authors named "Megan I Saunders"

Plans for habitat restoration will benefit from predictions of timescales for recovery. Theoretical models have been a powerful tool for informing practical guidelines in planning marine protected areas, suggesting restoration planning could also benefit from a theoretical framework. We developed a model that can predict recovery times following restoration action, under dispersal, recruitment and connectivity constraints.

View Article and Find Full Text PDF

Zostera muelleri is an abundant seagrass species distributed through intertidal and shallow subtidal waters on the subtropical coasts of Australia. The vertical distribution of Zostera is likely defined by tidal influences, particularly desiccation and light reduction stresses. These stresses were expected to affect the flowering of Z.

View Article and Find Full Text PDF
Article Synopsis
  • Biodiversity offsets are strategies used to balance the negative effects of building or development on nature and wildlife.
  • Experts usually suggest that these offsets should be near the area affected to help similar ecosystems, but sometimes distant offsets are considered.
  • A study on migratory shorebirds showed that while far-off offsets might work better in some cases, there are real risks and challenges in proving they are just as effective as local ones.
View Article and Find Full Text PDF

As efforts to restore coastal habitats accelerate, it is critical that investments are targeted to most effectively mitigate and reverse habitat loss and its impacts on biodiversity. One likely but largely overlooked impediment to effective restoration of habitat-forming organisms is failing to explicitly consider non-habitat-forming animals in restoration planning, implementation, and monitoring. These animals can greatly enhance or degrade ecosystem function, persistence, and resilience.

View Article and Find Full Text PDF

Mangrove forests store high amounts of carbon, protect communities from storms, and support fisheries. Mangroves exist in complex social-ecological systems, hence identifying socioeconomic conditions associated with decreasing losses and increasing gains remains challenging albeit important. The impact of national governance and conservation policies on mangrove conservation at the landscape-scale has not been assessed to date, nor have the interactions with local economic pressures and biophysical drivers.

View Article and Find Full Text PDF

Seagrass meadows are an important habitat for Testudines (sea turtles) and Sirenia (dugong and manatee) megaherbivores. Megaherbivores can influence the structuring of seagrass meadows; for example, foraging patterns have been found to relate to seagrass phenological strategy. However, as these observations are derived from uncontrolled field studies, it is unclear whether grazing drives such changes or if the changes are related to other factors (e.

View Article and Find Full Text PDF

Tidal wetlands are expected to respond dynamically to global environmental change, but the extent to which wetland losses have been offset by gains remains poorly understood. We developed a global analysis of satellite data to simultaneously monitor change in three highly interconnected intertidal ecosystem types-tidal flats, tidal marshes, and mangroves-from 1999 to 2019. Globally, 13,700 square kilometers of tidal wetlands have been lost, but these have been substantially offset by gains of 9700 km, leading to a net change of -4000 km over two decades.

View Article and Find Full Text PDF

Catchment impacts on downstream ecosystems are difficult to quantify, but important for setting management targets. Here we compared 12 years of monitoring data of seagrass area and biomass in Cleveland Bay, northeast Australia, with discharge and associated sediment loads from nearby rivers. Seagrass biomass and area exhibited different trajectories in response to river inputs.

View Article and Find Full Text PDF

The United Nations General Assembly calls for ecosystem restoration to be a primary intervention strategy used to counter the continued loss of natural habitats worldwide, while supporting human health and wellbeing globally. Restoration of coastal marine ecosystems is perceived by many to be expensive and prone to failure, in part explaining its low rates of implementation compared with terrestrial ecosystems. Yet, marine ecosystem restoration is a relatively new field, and we argue that assessments of its potential to answer this call should not rely on typical outcomes, but also to learn from successful outliers.

View Article and Find Full Text PDF

An estimated 100 million people inhabit coastal areas at risk from flooding and erosion due to climate change. Seagrass meadows, like other coastal ecosystems, attenuate waves. Due to inconsistencies in how wave attenuation is measured results cannot be directly compared.

View Article and Find Full Text PDF

Land-based activities, including deforestation, agriculture, and urbanisation, cause increased erosion, reduced inland and coastal water quality, and subsequent loss or degradation of downstream coastal marine ecosystems. Quantitative approaches to link sediment loads from catchments to metrics of downstream marine ecosystem state are required to calculate the cost effectiveness of taking conservation actions on land to benefits accrued in the ocean. Here we quantify the relationship between sediment loads derived from landscapes to habitat suitability of seagrass meadows in Moreton Bay, Queensland, Australia.

View Article and Find Full Text PDF

Coastal marine ecosystems can be managed by actions undertaken both on the land and in the ocean. Quantifying and comparing the costs and benefits of actions in both realms is therefore necessary for efficient management. Here, we quantify the link between terrestrial sediment runoff and a downstream coastal marine ecosystem and contrast the cost-effectiveness of marine- and land-based conservation actions.

View Article and Find Full Text PDF

Seagrass above, below and total biomass, density and leaf area, length and width were quantified at a species level for 122 sites over three sampling periods in Moreton Bay, Australia. Core samples were collected in two regions: (1) a high water quality region with varying species assemblages and canopy complexity (98 sites); and (2) along a turbidity gradient in the bay (24 sites within four locations). Core samples were collected using a 15 cm diameter×20 cm long corer.

View Article and Find Full Text PDF

Land-use change in the coastal zone has led to worldwide degradation of marine coastal ecosystems and a loss of the goods and services they provide. Restoration is the process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed and is critical for habitats where natural recovery is hindered. Uncertainties about restoration cost and feasibility can impede decisions on whether, what, how, where, and how much to restore.

View Article and Find Full Text PDF

Under projections of global climate change and other stressors, significant changes in the ecology, structure and function of coral reefs are predicted. Current management strategies tend to look to the past to set goals, focusing on halting declines and restoring baseline conditions. Here, we explore a complementary approach to decision making that is based on the anticipation of future changes in ecosystem state, function and services.

View Article and Find Full Text PDF

Over 1.3 billion people live on tropical coasts, primarily in developing countries. Many depend on adjacent coastal seas for food, and livelihoods.

View Article and Find Full Text PDF

Global stressors, including climate change, are a major threat to ecosystems, but they cannot be halted by local actions. Ecosystem management is thus attempting to compensate for the impacts of global stressors by reducing local stressors, such as overfishing. This approach assumes that stressors interact additively or synergistically, whereby the combined effect of two stressors is at least the sum of their isolated effects.

View Article and Find Full Text PDF

The distribution and abundance of seagrass ecosystems could change significantly over the coming century due to sea level rise (SLR). Coastal managers require mechanistic understanding of the processes affecting seagrass response to SLR to maximize their conservation and associated provision of ecosystem services. In Moreton Bay, Queensland, Australia, vast seagrass meadows supporting populations of sea turtles and dugongs are juxtaposed with the multiple stressors associated with a large and rapidly expanding human population.

View Article and Find Full Text PDF

The Western Rocklobster (Panulirus cygnus) is the most valuable single species fishery in Australia and the largest single country spiny lobster fishery in the world. In recent years a well-known relationship between oceanographic conditions and lobster recruitment has become uncoupled, with significantly lower recruitment than expected, generating interest in the factors influencing survival and development of the planktonic larval stages. The nutritional requirements and wild prey of the planktotrophic larval stage (phyllosoma) of P.

View Article and Find Full Text PDF