Publications by authors named "David P Callaghan"

Coral reef systems are facing unprecedented pressures due to climate change, and stable coral rubble substrates are crucial for facilitating large-scale coral regeneration. This study integrates the Sixth Phase of the Coupled Model Intercomparison Project climate models, sea-level rise projections from the Intergovernmental Panel on Climate Change Sixth Assessment Report, Shared Socioeconomic Pathway scenarios, and applies machine learning techniques to assess the risk of coral rubble instability in the Great Barrier Reef under future wave climate and depth change scenarios. Using the EC-Earth climate model under the SSP5-8.

View Article and Find Full Text PDF

The Sixth Assessment report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) states with high confidence that most sandy coasts around the world will experience an increase in coastal erosion over the twenty-first century. An increase in long term coastal erosion (coastline recession) along sandy coasts can translate into massive socio-economic impacts, unless appropriate adaptation measures are implemented in the next few decades. To adequately inform adaptation measures, it is necessary to have a good understanding of the relative importance of the physical processes driving coastline recession, as well as of linkages between consideration (or not) of certain processes and the level of risk tolerance; understandings that are hitherto lacking.

View Article and Find Full Text PDF

Climate change is widely expected to affect the thousands of small tidal inlets (STIs) dotting the global coastline. To properly inform effective adaptation strategies for the coastal areas in the vicinity of these inlets, it is necessary to know the temporal evolution of inlet stability over climate change time scales (50-100 years). As available numerical models are unable to perform continuous morphodynamic simulations at such time scales, here we develop and pilot a fast, probabilistic, reduced complexity model (RAPSTA - RAPid assessment tool of inlet STAbility) that can also quantify forcing uncertainties.

View Article and Find Full Text PDF

An estimated 100 million people inhabit coastal areas at risk from flooding and erosion due to climate change. Seagrass meadows, like other coastal ecosystems, attenuate waves. Due to inconsistencies in how wave attenuation is measured results cannot be directly compared.

View Article and Find Full Text PDF

Measurements of coral structural strength are coupled with a fluid dynamics-structural analysis to investigate the resilience of coral to wave loading under sea level rise and a typical Great Barrier Reef lagoon wave climate. The measured structural properties were used to determine the wave conditions and flow velocities that lead to structural failure. Hydrodynamic modelling was subsequently used to investigate the type of the bathymetry where coral is most vulnerable to breakage under cyclonic wave conditions, and how sea level rise (SLR) changes this vulnerability.

View Article and Find Full Text PDF

The distribution and abundance of seagrass ecosystems could change significantly over the coming century due to sea level rise (SLR). Coastal managers require mechanistic understanding of the processes affecting seagrass response to SLR to maximize their conservation and associated provision of ecosystem services. In Moreton Bay, Queensland, Australia, vast seagrass meadows supporting populations of sea turtles and dugongs are juxtaposed with the multiple stressors associated with a large and rapidly expanding human population.

View Article and Find Full Text PDF