After the success of semiconductor nanocrystals as light sources for displays in the visible range, the infrared range now offers a complementary playground. Applications requiring chemical contrast in images and applications to LIDAR technology incentivize the development of devices with narrow spectral responses. However, the solutions that rely on introducing notch filters still suffer from imperfect transmission at the wavelength of interest in a spectral range where their detection is already difficult.
View Article and Find Full Text PDFIn this work, we determine the electronic structure and charge carrier dynamics of α-FeO(0001) ultrathin film deposited on Pt(111) as a function of water pressure by combined near ambient pressure-time-resolved photoelectron spectroscopy (NAP-TR-PES) measurements and DFT calculations. Under ultrahigh vacuum (UHV) α-FeO exhibits the expected typical -type semiconductor behavior with a surface photovoltage (SPV) shift of 31 meV. Surprisingly, when exposed to water a completely different comportment appears.
View Article and Find Full Text PDFTransferring nanocrystals (NCs) from the laboratory environment toward practical applications has raised new challenges. HgTe appears as the most spectrally tunable infrared colloidal platform. Its low-temperature synthesis reduces the growth energy cost yet also favors sintering.
View Article and Find Full Text PDFThe understanding of the interfacial properties in perovskite devices under irradiation is crucial for their engineering. In this study we show how the electronic structure of the interface between CsPbBr perovskite nanocrystals (PNCs) and Au is affected by irradiation of X-rays, near-infrared (NIR), and ultraviolet (UV) light. The effects of X-ray and light exposure could be differentiated by employing low-dose X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFAchieving pure single-photon emission is essential for a range of quantum technologies, from quantum computing to quantum key distribution to quantum metrology. Among solid-state quantum emitters, colloidal lead halide perovskite (LHP) nanocrystals (NCs) have attracted considerable interest due to their structural and optical properties, which make them attractive candidates for single-photon sources (SPSs). However, their practical utilization has been hampered by environment-induced instabilities.
View Article and Find Full Text PDFThe structural and magnetic properties of a drop-cast film of flat CHBrCuO, a β-diketonato complex functionalized with bromine atoms, on a graphite surface are investigated using scanning tunneling microscopy, synchrotron X-ray absorption spectroscopy, and X-ray magnetic circular dichroism. Experimental measurements reveal that the Cu-complexes preferentially lay flat on the graphite surface. The magnetic hysteresis loops show that the organic thin film remains paramagnetic at 2 K with an easy axis of magnetization perpendicular to the graphite surface and is therefore perpendicular to the plane of the Cu-complex skeleton.
View Article and Find Full Text PDFAs nanocrystal-based devices gain maturity, a comprehensive understanding of their electronic structure is necessary for further optimization. Most spectroscopic techniques typically examine pristine materials and disregard the coupling of the active material to its actual environment, the influence of an applied electric field, and possible illumination effects. Therefore, it is critical to develop tools that can probe device and .
View Article and Find Full Text PDFAs the field of nanocrystal-based optoelectronics matures, more advanced techniques must be developed in order to reveal the electronic structure of nanocrystals, particularly with device-relevant conditions. So far, most of the efforts have been focused on optical spectroscopy, and electrochemistry where an absolute energy reference is required. Device optimization requires probing not only the pristine material but also the material in its actual environment (i.
View Article and Find Full Text PDFNanocrystals (NCs) are now established building blocks for optoelectronics and their use as down converters for large gamut displays has been their first mass market. NC integration relies on a combination of green and red NCs into a blend, which rises post-growth formulation issues. A careful engineering of the NCs may enable dual emissions from a single NC population which violates Kasha's rule, which stipulates that emission should occur at the band edge.
View Article and Find Full Text PDFFaraday Discuss
August 2022
The adsorption of phthalocyanine (HPc) on the 6H-SiC(0001)-(3 × 3) surface is investigated using X-ray photoelectron spectroscopy (XPS), near edge X-ray absorption fine structure spectroscopy (NEXAFS), and density functional theory (DFT) calculations. Spectral features are tracked from the submonolayer to the multilayer growth regime, observing a significant modification of spectroscopic signals at low coverage with respect to the multilayer films, where molecules are weakly interacting. Molecules stay nearly flat on the surface at the mono and submonolayers.
View Article and Find Full Text PDFWe have monitored the temporal evolution of the band bending at controlled silicon surfaces after a fs laser pump excitation. Time-resolved surface photo-voltage (SPV) experiments were performed using time resolved photoemission spectroscopy with time resolution of about 30 ns. To disentangle the influence of doping and surface termination on SPV dynamics, we compare the results obtained on two surface terminations: the water saturated (H,OH)-Si(001) surface and the thermally oxidized Si(001) one.
View Article and Find Full Text PDFTwo-dimensional materials (2D) arranged in hybrid van der Waals (vdW) heterostructures provide a route toward the assembly of 2D and conventional III-V semiconductors. Here, we report the structural and electronic properties of single layer WSe grown by molecular beam epitaxy on Se-terminated GaAs(111)B. Reflection high-energy electron diffraction images exhibit sharp streaky features indicative of a high-quality WSe layer produced vdW epitaxy.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2021
Water adsorption and dissociation on undoped and Ti-doped hematite thin films were investigated using near-ambient pressure photoemission and DFT calculations. A fine understanding of doping effects is of prime importance in the framework of photoanode efficiency in aqueous conditions. By comparison to pure FeO surface, the Ti(2%)-FeO surface shows a lower hydroxylation level.
View Article and Find Full Text PDFNanoscale
November 2021
Band bending in colloidal quantum dot (CQD) solids has become important in driving charge carriers through devices. This is typically a result of band alignments at junctions in the device. Whether band bending is intrinsic to CQD solids, is band bending present at the surface-vacuum interface, has previously been unanswered.
View Article and Find Full Text PDFMercury telluride (HgTe) nanocrystals are among the most versatile infrared (IR) materials with the absorption of lowest energy optical absorption which can be tuned from the visible to the terahertz range. Therefore, they have been extensively considered as near IR emitters and as absorbers for low-cost IR detectors. However, the electroluminescence of HgTe remains poorly investigated despite its ability to go toward longer wavelengths compared to traditional lead sulfide (PbS).
View Article and Find Full Text PDFTo date, defect-tolerance electronic structure of lead halide perovskite nanocrystals is limited to an optical feature in the visible range. Here, we demonstrate that IR sensitization of formamidinium lead iodine (FAPI) nanocrystal array can be obtained by its doping with PbS nanocrystals. In this hybrid array, absorption comes from the PbS nanocrystals while transport is driven by the perovskite which reduces the dark current compared to pristine PbS.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2019
Infrared applications remain too often a niche market due to their prohibitive cost. Nanocrystals offer an interesting alternative to reach cost disruption especially in the short-wave infrared (SWIR, λ < 1.7 μm) where material maturity is now high.
View Article and Find Full Text PDFWavefunction engineering using intraband transition is the most versatile strategy for the design of infrared devices. To date, this strategy is nevertheless limited to epitaxially grown semiconductors, which lead to prohibitive costs for many applications. Meanwhile, colloidal nanocrystals have gained a high level of maturity from a material perspective and now achieve a broad spectral tunability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2019
Among colloidal nanocrystals, 2D nanoplatelets (NPLs) made of II-VI compounds appear as a special class of emitters with an especially narrow photoluminescence signal. However, the PL signal in the case of NPLs is only tunable by a discrete step. Here, we demonstrate that doping is a viable path to finely tune the color of these NPLs from green to red, making them extremely interesting as phosphors for wide-gamut display.
View Article and Find Full Text PDFWe demonstrate the growth of 2D nanoplatelets (NPLs) made of a HgTe/CdS heterostructure, with an optical absorption reaching the shortwave infrared range. The material is an interesting platform to investigate the effect of dimensionality (0D vs. 2D) and confinement on the electronic spectrum and carrier dynamics in colloidal materials.
View Article and Find Full Text PDFThe use of intraband transition is an interesting alternative path for the design of optically active complex colloidal materials in the mid-infrared range. However, so far, the performance obtained for photodetection based on intraband transition remains much smaller than the one relying on interband transition in narrow-band-gap materials operating at the same wavelength. New strategies have to be developed to make intraband materials more effective.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2018
Mercury chalcogenide nanocrystals and especially HgTe appear as an interesting platform for the design of low cost mid-infrared (mid-IR) detectors. Nevertheless, their electronic structure and transport properties remain poorly understood, and some critical aspects such as the carrier relaxation dynamics at the band edge have been pushed under the rug. Some of the previous reports on dynamics are setup-limited, and all of them have been obtained using photon energy far above the band edge.
View Article and Find Full Text PDF