Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transferring nanocrystals (NCs) from the laboratory environment toward practical applications has raised new challenges. HgTe appears as the most spectrally tunable infrared colloidal platform. Its low-temperature synthesis reduces the growth energy cost yet also favors sintering. Once coupled to a read-out circuit, the Joule effect aggregates the particles, leading to a poorly defined optical edge and large dark current. Here, we demonstrate that CdS shells bring the expected thermal stability (no redshift upon annealing, reduced tendency to form amalgams, and preservation of photoconduction after an atomic layer deposition process). The electronic structure of these confined particles is unveiled using k.p self-consistent simulations showing a significant exciton binding energy of ∼200 meV. After shelling, the material displays a ptype behavior that favors the generation of photoconductive gain. The latter is then used to increase the external quantum efficiency of an infrared imager, which now reaches 40% while presenting long-term stability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c00907DOI Listing

Publication Analysis

Top Keywords

infrared imaging
4
imaging thermally
4
thermally stable
4
stable hgte/cds
4
hgte/cds nanocrystals
4
nanocrystals transferring
4
transferring nanocrystals
4
nanocrystals ncs
4
ncs laboratory
4
laboratory environment
4

Similar Publications

Insect pupae change morphologically (e.g., pigmentation of eyes, wings, setae and legs) during the intrapuparial period.

View Article and Find Full Text PDF

Micro-Strain Responsive Near-Infrared Mechanoluminescence for Potential Nondestructive Artificial Joint Stress Imaging.

Adv Mater

September 2025

Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China.

Recently, joint replacement surgery is facing significant challenges of patient dissatisfaction and the need for revision procedures. In-situ monitoring of stress stability at the site of artificial joint replacement during postoperative evaluation is important. Mechanoluminescence (ML), a novel "force to light" conversion technology, may be used to monitor such bio-stress within tissues.

View Article and Find Full Text PDF

Shortwave infrared absorbing and fluorescent BODIPY J-aggregates for high-contrast imaging.

Chem Sci

August 2025

College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China

J-Aggregates hold significant promise for high-resolution shortwave infrared (SWIR) imaging, yet achieving robust SWIR absorption and emission simultaneously has been hindered by hypsochromic shifts in absorption and emission quenching caused by undesirable H- and random aggregation. To address this, we developed highly fluorescent BODIPY J-aggregates exhibiting absorption and emission spanning 1000-1600 nm. A key innovation was the implementation of a zig-zag molecular design, which effectively suppressed H-aggregation and minimized intermolecular interactions, thereby enabling anti-quenching SWIR emission.

View Article and Find Full Text PDF

Objective: This study investigates the biomechanical effects of long-term Tai Chi practice on the knee meniscus through biomechanical experimentation and finite element simulation, focusing on practitioners performing Knee Brushing and Twisting Step. The findings aim to establish scientific guidelines for optimizing exercise protocols in middle-aged and elderly populations.

Methods: Twenty male middle-aged and elderly practitioners were recruited, divided into a Beginner Group (BG: n = 10), and an Experienced Group (EG: n = 10).

View Article and Find Full Text PDF

Unveiling photophysical mechanisms of NIR-II AIE luminogens for multimodal imaging-navigated synergistic therapies.

Natl Sci Rev

August 2025

Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.

Multimodal phototheranostics has been recognized as one of the most momentous advances in cancer treatment. Of particular interest is a single molecular species simultaneously featuring in multiple imaging and synergistic phototherapies; the development of such a molecular species is nevertheless a formidably challenging task. Herein, we innovatively designed and synthesized three aggregation-induced emission (AIE)-active molecules with emission in the second near-infrared (NIR-II) window, by employing 10-indeno[1,2-][1,2,5]thiadiazolo[3,4-]quinoxalin-10-one as the electron acceptor, 4-(-butyl)--(4-(-butyl)phenyl)--phenylaniline as the electron donor, and different π-bridge moieties.

View Article and Find Full Text PDF