98%
921
2 minutes
20
As the field of nanocrystal-based optoelectronics matures, more advanced techniques must be developed in order to reveal the electronic structure of nanocrystals, particularly with device-relevant conditions. So far, most of the efforts have been focused on optical spectroscopy, and electrochemistry where an absolute energy reference is required. Device optimization requires probing not only the pristine material but also the material in its actual environment (i.e., surrounded by a transport layer and an electrode, in the presence of an applied electric field). Here, we explored the use of photoemission microscopy as a strategy for investigation of NC-based devices. We demonstrate that the method can be applied to a variety of materials and device geometries. Finally, we show that it provides direct access to the metal-semiconductor interface band bending as well as the distance over which the gate effect propagates in field-effect transistors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.2c04637 | DOI Listing |
Natl Sci Rev
September 2025
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
Chiral halide perovskite (c-HP) semiconductors exhibit on average a large chiral-induced spin selectivity (CISS) effect. Nevertheless, the microscopic details of CISS and its integration in opto-spintronic constructs remain nascent. Reliable reporting of CISS performance characteristics represents a significant challenge in providing the necessary design rules.
View Article and Find Full Text PDFFASEB Bioadv
September 2025
Kobilka Institute of Innovative Drug Discovery, School of Medicine The Chinese University of Hong Kong Shenzhen Guangdong China.
Formyl peptide receptor 1 (FPR1) is a G protein-coupled receptor (GPCR) that mediates chemotaxis and bactericidal activities in phagocytes. The monoclonal antibody 5F1 is generated against full-length FPR1 and used widely for detection of FPR1 expression. This study aimed to characterize 5F1 for its functions.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai, 201620, China. Electronic address:
In this study, a novel bleaching method for ramie cellulose fibers with low oxidative damage was developed by utilizing the properties of sodium percarbonate contained in tea saponin, which slowly releases hydrogen peroxide in the catalytic oxidation system of N-hydroxyphthalimide (NHPI). First, the bleaching process was optimized using response surface design, followed by comparison and characterization of fiber properties prepared under different bleaching systems. Finally, the energy consumption, water consumption, and toxicity of the NHPI/tea saponin system were evaluated.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States.
Two-dimensional (2D) materials offer a valuable platform for manipulating and studying chemical reactions at the atomic level, owing to the ease of controlling their microscopic structure at the nanometer scale. While extensive research has been conducted on the structure-dependent chemical activity of 2D materials, the influence of structural transformation during the reaction has remained largely unexplored. In this work, we report the layer-dependent chemical reactivity of MoS during a nitridation atomic substitution reaction and attribute it to the rearrangement of Mo atoms.
View Article and Find Full Text PDFUnlabelled: Passive Acoustic Mapping (PAM) is rapidly emerging as a ubiquitous tool for real-time localization and monitoring of therapeutic ultrasound treatments involving cavitation in the context of safety or efficacy. The ability of PAM to spatially quantify and resolve cavitation activity offers a unique opportunity to correlate the energy of cavitation phenomena with locally observed bioeffects.
Objective: We aim to develop methods of measuring and reporting spatio-temporally varying cavitation energies that are energy-preserving, device-independent, and adequately normalized to the volume of tissue being affected by the reported cavitation activity.