Northern ecosystems (≥ 30° N) have been accumulating vegetation biomass carbon in recent decades, but increasing droughts and wildfires threaten this carbon sink. Here, we analyse annual changes in live vegetation biomass in northern ecosystems using low-frequency microwave satellite observations at 25 km spatial resolution from 2010 to 2022. We find that live biomass carbon stocks have undergone a reversal from a positive to a negative trend during the study period with 2016 marking the turning point.
View Article and Find Full Text PDFAccelerating energy transition towards renewables is central to net-zero emissions. However, building a global power system dominated by solar and wind energy presents immense challenges. Here, we demonstrate the potential of a globally interconnected solar-wind system to meet future electricity demands.
View Article and Find Full Text PDFJ Biomed Semantics
December 2024
Motivation: We are witnessing an enormous growth in the amount of molecular profiling (-omics) data. The integration of multi-omics data is challenging. Moreover, human multi-omics data may be privacy-sensitive and can be misused to de-anonymize and (re-)identify individuals.
View Article and Find Full Text PDFThe baobab tree (Adansonia digitata L.) is an integral part of rural livelihoods throughout the African continent. However, the combined effects of climate change and increasing global demand for baobab products are currently exerting pressure on the sustainable utilization of these resources.
View Article and Find Full Text PDFThe extreme dry and hot 2015/16 El Niño episode caused large losses in tropical live aboveground carbon (AGC) stocks. Followed by climatic conditions conducive to high vegetation productivity since 2016, tropical AGC are expected to recover from large losses during the El Niño episode; however, the recovery rate and its spatial distribution remain unknown. Here, we used low-frequency microwave satellite data to track AGC changes, and showed that tropical AGC stocks returned to pre-El Niño levels by the end of 2020, resulting in an AGC sink of Pg C year during 2014-2020.
View Article and Find Full Text PDFNon-linear trend detection in Earth observation time series has become a standard method to characterize changes in terrestrial ecosystems. However, results are largely dependent on the quality and consistency of the input data, and only few studies have addressed the impact of data artifacts on the interpretation of detected abrupt changes. Here we study non-linear dynamics and turning points (TPs) of temperate grasslands in East Eurasia using two independent state-of-the-art satellite NDVI datasets (CGLS v3 and MODIS C6) and explore the impact of water availability on observed vegetation changes during 2001-2019.
View Article and Find Full Text PDFGreenhouse cultivation has been expanding rapidly in recent years, yet little knowledge exists on its global extent and expansion. Using commercial and freely available satellite data combined with artificial intelligence techniques, we present a global assessment of greenhouse cultivation coverage and map 1.3 million hectares of greenhouse infrastructures in 2019, a much larger extent than previously estimated.
View Article and Find Full Text PDFJ Hydrol Reg Stud
April 2024
Study Region: The Africa Sahel-Sudan region, defined by annual rainfall between 150 and 1200 mm.
Study Focus: Understanding the mechanism of vegetation response to water availability could help mitigate the potential adverse effects of climate change on global dryland ecosystems. In the Sahel-Sudan region, spatio-temporal changes and drivers of the vegetation-water response remain unclear.
Forests are attracting attention as a promising avenue to provide nutritious and "free" food without damaging the environment. Yet, we lack knowledge on the extent to which this holds in areas with sparse tree cover, such as in West Africa. This is largely due to the fact that existing methods are poorly designed to quantify tree cover in drylands.
View Article and Find Full Text PDFGroup IV vacancy color centers in diamond are promising spin-photon interfaces with strong potential for applications in photonic quantum technologies. Reliable methods for controlling and stabilizing their charge state are urgently needed for scaling to multiqubit devices. Here, we manipulate the charge state of silicon vacancy (SiV) ensembles by combining luminescence and photocurrent spectroscopy.
View Article and Find Full Text PDFIn recent years, large-scale tree mortality events linked to global change have occurred around the world. Current forest monitoring methods are crucial for identifying mortality hotspots, but systematic assessments of isolated or scattered dead trees over large areas are needed to reduce uncertainty on the actual extent of tree mortality. Here, we mapped individual dead trees in California using sub-meter resolution aerial photographs from 2020 and deep learning-based dead tree detection.
View Article and Find Full Text PDFQuantum sensing with spin defects in diamond, such as the nitrogen vacancy (NV) center, enables the detection of various chemical species on the nanoscale. Molecules or ions with unpaired electronic spins are typically probed by their influence on the NV center's spin relaxation. Whereas it is well-known that paramagnetic ions reduce the NV center's relaxation time (), here we report on the opposite effect for diamagnetic ions.
View Article and Find Full Text PDFThe consistent monitoring of trees both inside and outside of forests is key to sustainable land management. Current monitoring systems either ignore trees outside forests or are too expensive to be applied consistently across countries on a repeated basis. Here we use the PlanetScope nanosatellite constellation, which delivers global very high-resolution daily imagery, to map both forest and non-forest tree cover for continental Africa using images from a single year.
View Article and Find Full Text PDFSustainable tree resource management is the key to mitigating climate warming, fostering a green economy, and protecting valuable habitats. Detailed knowledge about tree resources is a prerequisite for such management but is conventionally based on plot-scale data, which often neglects trees outside forests. Here, we present a deep learning-based framework that provides location, crown area, and height for individual overstory trees from aerial images at country scale.
View Article and Find Full Text PDFThe distribution of dryland trees and their density, cover, size, mass and carbon content are not well known at sub-continental to continental scales. This information is important for ecological protection, carbon accounting, climate mitigation and restoration efforts of dryland ecosystems. We assessed more than 9.
View Article and Find Full Text PDFThe atmospheric CO growth rate (CGR) variability is largely controlled by tropical temperature fluctuations. The sensitivity of CGR to tropical temperature [Formula: see text] has strongly increased since 1960, but here we show that this trend has ceased. Here, we use the long-term CO records from Mauna Loa and the South Pole to compute CGR, and show that [Formula: see text] increased by 200% from 1960-1979 to 1979-2000 but then decreased by 117% from 1980-2001 to 2001-2020, almost returning back to the level of the 1960s.
View Article and Find Full Text PDFTrees sustain livelihoods and mitigate climate change but a predominance of trees outside forests and limited resources make it difficult for many tropical countries to conduct automated nation-wide inventories. Here, we propose an approach to map the carbon stock of each individual overstory tree at the national scale of Rwanda using aerial imagery from 2008 and deep learning. We show that 72% of the mapped trees are located in farmlands and savannas and 17% in plantations, accounting for 48.
View Article and Find Full Text PDFLakes are important natural resources and carbon gas emitters and are undergoing rapid changes worldwide in response to climate change and human activities. A detailed global characterization of lakes and their long-term dynamics does not exist, which is however crucial for evaluating the associated impacts on water availability and carbon emissions. Here, we map 3.
View Article and Find Full Text PDFGlob Chang Biol
February 2022
Croplands expanded in Africa over recent decades, even though the increasing trends are spatially heterogeneous.
View Article and Find Full Text PDFSci Total Environ
February 2022
Plant phenology provides information on the seasonal dynamics of plants, and changes herein are important for understanding the impact of climate change and human management on the biosphere. Land surface phenology is the study of plant phenology across large spatial scales estimated by satellite observations. However, satellite observations (pixels) are often composed of a mixture of vegetation types, like woody vegetation and herbaceous vegetation, having different phenological characteristics.
View Article and Find Full Text PDFMaterials combining semiconductor functionalities with spin control are desired for the advancement of quantum technologies. Here, we study the magneto-optical properties of novel paramagnetic Ruddlesden-Popper hybrid perovskites Mn:(PEA)PbI (PEA = phenethylammonium) and report magnetically brightened excitonic luminescence with strong circular polarization from the interaction with isolated Mn ions. Using a combination of superconducting quantum interference device (SQUID) magnetometry, magneto-absorption and transient optical spectroscopy, we find that a dark exciton population is brightened by state mixing with the bright excitons in the presence of a magnetic field.
View Article and Find Full Text PDFThe karst area in Yunnan-Guangxi-Guizhou region in southwest China is known for widespread rocky desertification but several studies report a greening trend since the year 2000. While the start of the greening trend seems to match with the implementation of ecological conservation projects, no statistical evidence on a relationship between vegetation greening and eco-engineering exists. Moreover, dominant factors influencing the spatial patterns of vegetation trends have rarely been investigated.
View Article and Find Full Text PDFThe Tibetan Plateau is the highest and largest plateau in the world, hosting unique alpine grassland and having a much higher snow cover than any other region at the same latitude, thus representing a "climate change hot-spot". Land surface phenology characterizes the timing of vegetation seasonality at the per-pixel level using remote sensing systems. The impact of seasonal snow cover variations on land surface phenology has drawn much attention; however, there is still no consensus on how the remote sensing estimated start of season (SOS) is biased by the presence of preseason snow cover.
View Article and Find Full Text PDF