Publications by authors named "Torbern Tagesson"

Soil quality is fundamental to nutrient-rich food production and the sustainability of terrestrial ecosystems. However, inappropriate agricultural practices often lead to persistent soil exposure to air and sunlight, which increases soil organic matter losses and erosion risks, particularly under climate extremes. Here, we provide a satellite-based mapping of daily soil exposure occurrence across global croplands from 2001 to 2022 and evaluate the associated degradation risks caused by extreme climate events.

View Article and Find Full Text PDF

Monitoring the changes of ecosystem functioning is pivotal for understanding the global carbon cycle. Despite its size and contribution to the global carbon cycle, Africa is largely understudied in regard to ongoing changes of its ecosystem functioning and their responses to climate change. One of the reasons is the lack of long-term in situ data.

View Article and Find Full Text PDF

Increasing aridity is one major consequence of ongoing global climate change and is expected to cause widespread changes in key ecosystem attributes, functions, and dynamics. This is especially the case in naturally vulnerable ecosystems, such as drylands. While we have an overall understanding of past aridity trends, the linkage between temporal dynamics in aridity and dryland ecosystem responses remain largely unknown.

View Article and Find Full Text PDF

Recent rapid warming has caused uneven impacts on the composition, structure, and functioning of northern ecosystems. It remains unknown how climatic drivers control linear and non-linear trends in ecosystem productivity. Based on a plant phenology index (PPI) product at a spatial resolution of 0.

View Article and Find Full Text PDF

Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003-2015) vegetation gross primary productivity (GPP), ecosystem respiration (R ), net ecosystem CO exchange (NEE; R  - GPP), and terrestrial methane (CH ) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites.

View Article and Find Full Text PDF

Herbaceous aboveground biomass (HAB) is a key indicator of grassland vegetation and indirect estimation tools, such as remote sensing imagery, increase the potential for covering larger areas in a timely and cost-efficient way. Structure from Motion (SfM) is an image analysis process that can create a variety of 3D spatial models as well as 2D orthomosaics from a set of images. Computed from Unmanned Aerial Vehicle (UAV) and ground camera measurements, the SfM potential to estimate the herbaceous aboveground biomass in Sahelian rangelands was tested in this study.

View Article and Find Full Text PDF
Article Synopsis
  • Research discusses how current global climate models are based on air temperatures but fail to capture the soil temperatures beneath vegetation where many species thrive.
  • New global maps present soil temperature and bioclimatic variables at 1-km resolution for specific depths, revealing that mean annual soil temperatures can differ significantly from air temperatures by up to 10°C.
  • The findings indicate that relying on air temperature could misrepresent climate impacts on ecosystems, especially in colder regions, highlighting the need for more precise soil temperature data for ecological studies.
View Article and Find Full Text PDF

The regional variability in tundra and boreal carbon dioxide (CO ) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e.

View Article and Find Full Text PDF

Ecosystem respiration is a major component of the global terrestrial carbon cycle and is strongly influenced by temperature. The global extent of the temperature-ecosystem respiration relationship, however, has not been fully explored. Here, we test linear and threshold models of ecosystem respiration across 210 globally distributed eddy covariance sites over an extensive temperature range.

View Article and Find Full Text PDF

The Tibetan Plateau is the highest and largest plateau in the world, hosting unique alpine grassland and having a much higher snow cover than any other region at the same latitude, thus representing a "climate change hot-spot". Land surface phenology characterizes the timing of vegetation seasonality at the per-pixel level using remote sensing systems. The impact of seasonal snow cover variations on land surface phenology has drawn much attention; however, there is still no consensus on how the remote sensing estimated start of season (SOS) is biased by the presence of preseason snow cover.

View Article and Find Full Text PDF

Earth observation-based estimates of global gross primary production (GPP) are essential for understanding the response of the terrestrial biosphere to climatic change and other anthropogenic forcing. In this study, we attempt an ecosystem-level physiological approach of estimating GPP using an asymptotic light response function (LRF) between GPP and incoming photosynthetically active radiation (PAR) that better represents the response observed at high spatiotemporal resolutions than the conventional light use efficiency approach. Modelled GPP is thereafter constrained with meteorological and hydrological variables.

View Article and Find Full Text PDF
Article Synopsis
  • - The FLUXNET2015 dataset encompasses ecosystem-scale data on carbon dioxide, water, and energy exchange, collected from 212 global sites contributing over 1500 site-years of data until 2014.
  • - The dataset was systematically quality controlled and processed, facilitating consistency for various applications in ecophysiology, remote sensing, and ecosystem modeling.
  • - For the first time, derived data products such as time series, ecosystem respiration, and photosynthesis estimates are included, and 206 sites are made accessible under a Creative Commons license, with the processing methods available as open-source codes.
View Article and Find Full Text PDF
Article Synopsis
  • Anthropogenic land use and cover changes (LULCC) significantly affect the global carbon sink, but these effects vary by biogeographical region.
  • A study used advanced Earth observation data and a global vegetation model to analyze LULCC's impact on world biomes from 1992 to 2015, revealing that tropical and boreal forests equally contributed the most to the carbon sink.
  • The main driver for the increased carbon sink was CO fertilization, but the overall effects of various factors showed contrasting trends in carbon contribution from tropical (decreasing) and boreal (increasing) forests, highlighting that LULCC impacts on tropical forests are greater than previously thought.
View Article and Find Full Text PDF

Plant water storage is fundamental to the functioning of terrestrial ecosystems by participating in plant metabolism, nutrient and sugar transport, and maintenance of the integrity of the hydraulic system of the plant. However, a global view of the size and dynamics of the water pools stored in plant tissues is still lacking. Here, we report global patterns of seasonal variations in ecosystem-scale plant water storage and their relationship with leaf phenology, based on space-borne measurements of L-band vegetation optical depth.

View Article and Find Full Text PDF

The African continent is facing one of the driest periods in the past three decades as well as continued deforestation. These disturbances threaten vegetation carbon (C) stocks and highlight the need for improved capabilities of monitoring large-scale aboveground carbon stock dynamics. Here we use a satellite dataset based on vegetation optical depth derived from low-frequency passive microwaves (L-VOD) to quantify annual aboveground biomass-carbon changes in sub-Saharan Africa between 2010 and 2016.

View Article and Find Full Text PDF

Savannah regions are predicted to undergo changes in precipitation patterns according to current climate change projections. This change will affect leaf phenology, which controls net primary productivity. It is of importance to study this since savannahs play an important role in the global carbon cycle due to their areal coverage and can have an effect on the food security in regions that depend on subsistence farming.

View Article and Find Full Text PDF

The collapse of the Soviet Union in 1991 has been a turning point in the World history that left a unique footprint on the Northern Eurasian ecosystems. Conducting large scale mapping of environmental change and separating between naturogenic and anthropogenic drivers is a difficult endeavor in such highly complex systems. In this research a piece-wise linear regression method was used for breakpoint detection in Rain-Use Efficiency (RUE) time series and a classification of ecosystem response types was produced.

View Article and Find Full Text PDF

The Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ data. The studied variables include hydroclimatic variables, species composition, albedo, normalized difference vegetation index (NDVI), hyperspectral characteristics (350-1800 nm), surface reflectance anisotropy, brightness temperature, fraction of absorbed photosynthetic active radiation (FAPAR), biomass, vegetation water content, and land-atmosphere exchanges of carbon (NEE) and energy.

View Article and Find Full Text PDF

The aim of this study was to investigate a combination of satellite images of leaf area index (LAI) with process-based vegetation modeling for the accurate assessment of the carbon balances of Swedish forest ecosystems at the scale of a landscape. Monthly climatologic data were used as inputs in a dynamic vegetation model, the Lund Potsdam Jena-General Ecosystem Simulator. Model estimates of net primary production (NPP) and the fraction of absorbed photosynthetic active radiation were constrained by combining them with satellite-based LAI images using a general light use efficiency (LUE) model and the Beer-Lambert law.

View Article and Find Full Text PDF