98%
921
2 minutes
20
Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003-2015) vegetation gross primary productivity (GPP), ecosystem respiration (R ), net ecosystem CO exchange (NEE; R - GPP), and terrestrial methane (CH ) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of -850 Tg CO -C year . Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH emissions from tundra and boreal wetlands (not accounting for aquatic CH ) were estimated at 35 Tg CH -C year . Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.16553 | DOI Listing |
Mikrochim Acta
September 2025
Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province, 650500, China.
Iron-cerium co-doped carbon dots (Fe,Ce-CDs) were synthesized by one-step hydrothermal method using tartaric acid and L-tryptophan as ligands. Fe,Ce-CDs shows excellent peroxidase-like (POD) activity and nitrite (NO) can promote the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to its blue oxidation product (oxTMB) due to the formation of ∙NO free radical. NO further react with oxTMB to form a yellow color via diazotization resulting in the absorbance Change at 450 nm.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
College of Ecological and Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China.
The rapid development of industry and agriculture has led to a significant increase in the toxicity and pollution of cadmium (Cd) and lead (Pb) in soil. Consequently, soil remediation employing biochar or modified biochar has emerged as a cost-effective and environmentally sustainable approach to address the issue of heavy metal (HM) ion pollution. PEI-functionalization biochar (PBC) derived from corn straw (PBCC), wood straw (PBCW), and rice straw (PBCR) was synthesized to immobilize Cd and Pb in contaminated acidic yellow soil.
View Article and Find Full Text PDFNature
September 2025
Institute for Atmospheric and Climate Science, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland.
Extreme event attribution assesses how climate change affected climate extremes, but typically focuses on single events. Furthermore, these attributions rarely quantify the extent to which anthropogenic actors have contributed to these events. Here we show that climate change made 213 historical heatwaves reported over 2000-2023 more likely and more intense, to which each of the 180 carbon majors (fossil fuel and cement producers) substantially contributed.
View Article and Find Full Text PDFNature
September 2025
Los Alamos National Laboratory, Los Alamos, NM, USA.
The Perseverance rover has explored and sampled igneous and sedimentary rocks within Jezero Crater to characterize early Martian geological processes and habitability and search for potential biosignatures. Upon entering Neretva Vallis, on Jezero Crater's western edge, Perseverance investigated distinctive mudstone and conglomerate outcrops of the Bright Angel formation. Here we report a detailed geological, petrographic and geochemical survey of these rocks and show that organic-carbon-bearing mudstones in the Bright Angel formation contain submillimetre-scale nodules and millimetre-scale reaction fronts enriched in ferrous iron phosphate and sulfide minerals, likely vivianite and greigite, respectively.
View Article and Find Full Text PDF