Accurate measurements of binding kinetics, encompassing equilibrium dissociation constant ( ), association rate ( ), and dissociation rate ( ), are critical for the development and optimisation of high-affinity binding proteins. However, such measurements require highly purified material and precise ligand immobilisation, limiting the number of binders that can be characterised within a reasonable timescale and budget. Here, we present the SpyBLI method, a rapid and cost-effective biolayer interferometry (BLI) pipeline that leverages the SpyCatcher003-SpyTag003 covalent association, eliminating the need for both binder purification and concentration determination.
View Article and Find Full Text PDFNat Chem Biol
July 2025
Click chemistry is a powerful concept that refers to a set of covalent bond-forming reactions with highly favorable properties. In this Perspective, I outline the analogous concept of click biology as a set of reactions derived from the regular building blocks of living cells, rapidly forming covalent bonds to specific partners under cell-friendly conditions. Click biology using protein components employs canonical amino acids and may react close to the diffusion limit, with selectivity in living cells amid thousands of components generated from the same building blocks.
View Article and Find Full Text PDFEmerg Microbes Infect
December 2025
The increasing spread of highly pathogenic avian influenza (HPAI) A/H5 viruses poses a pandemic threat. Circulating clade 2.3.
View Article and Find Full Text PDFThe upsurge of mpox in Africa and the recent global outbreak have stimulated the development of new vaccines and therapeutics. We describe the construction of virus-like particle (VLP) vaccines in which modified M1, A35 and B6 proteins from monkeypox virus (MPXV) clade Ia are conjugated individually or together to a scaffold that accommodates up to 60 ligands using the SpyTag/SpyCatcher nanoparticle system. Immunisation of female mice with VLPs induces higher anti-MPXV and anti-vaccinia virus (VACV) neutralizing antibodies than their soluble protein (SP) counterparts or modified VACV Ankara (MVA).
View Article and Find Full Text PDFProtein-antibody conjugates represent major advancements in targeted therapeutics. However, platforms enabling 'off-the-shelf' antibody conjugation are seldom reported. The SpyTag/SpyCatcher system, known for its stable isopeptide bond formation, is widely used to engineer protein architectures and study protein folding.
View Article and Find Full Text PDFCurr Opin Biotechnol
April 2025
Intermolecular relationships at the cell surface dictate the behavior and regulatory network of cells. Such interactions often require precise spatial control for optimal response. By binding simultaneously to two different target sites, bispecific binders can bridge molecules of interest.
View Article and Find Full Text PDFPlasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage malaria vaccine antigen target, currently in a phase 2b clinical trial as a full-length soluble protein/adjuvant vaccine candidate called RH5.1/Matrix-M. We identify that disordered regions of the full-length RH5 molecule induce non-growth inhibitory antibodies in human vaccinees and that a re-engineered and stabilized immunogen (including just the alpha-helical core of RH5) induces a qualitatively superior growth inhibitory antibody response in rats vaccinated with this protein formulated in Matrix-M adjuvant.
View Article and Find Full Text PDFUnderstanding the structure of biomolecules is vital for deciphering their roles in biological systems. Single-molecule techniques have emerged as alternatives to conventional ensemble structure analysis methods for uncovering new biology in molecular dynamics and interaction studies, yet only limited structural information could be obtained experimentally. Here, we address this challenge by introducing FRET, a one-pot method that allows 3D profiling of individual molecules using two-color FRET measurements.
View Article and Find Full Text PDFDefending against future pandemics requires vaccine platforms that protect across a range of related pathogens. Nanoscale patterning can be used to address this issue. Here, we produce quartets of linked receptor-binding domains (RBDs) from a panel of SARS-like betacoronaviruses, coupled to a computationally designed nanocage through SpyTag/SpyCatcher links.
View Article and Find Full Text PDFBispecific antibodies are a successful and expanding therapeutic class. Standard approaches to generate bispecifics are complicated by the need for disulfide reduction/oxidation or specialized formats. Here we present SpyMask, a modular approach to bispecifics using SpyTag/SpyCatcher spontaneous amidation.
View Article and Find Full Text PDFLight is well-established for control of bond breakage but not for control of specific bond formation in complex environments. We previously engineered the diffusion-limited reactivity of the SpyTag003 peptide with its protein partner SpyCatcher003 through spontaneous isopeptide bond formation. This system enables precise and irreversible assembly of biological building blocks with applications from biomaterials to vaccines.
View Article and Find Full Text PDFLight is well established for control of bond breakage, but not for control of specific bond formation in complex environments. We previously engineered diffusion-limited reactivity of SpyTag003 peptide with its protein partner SpyCatcher003 through spontaneous transamidation. This system enables precise and irreversible assembly of biological building blocks, with applications from biomaterials to vaccines.
View Article and Find Full Text PDFRobust and precise tools are needed to enhance the functionality and resilience of synthetic nanoarchitectures. Here, we have employed directed evolution and rational design to build a fast-acting molecular superglue from a bacterial adhesion protein. We have generated the SnoopLigase2 coupling system, a genetically encoded route for efficient transamidation between SnoopTag2 and DogTag2 peptides.
View Article and Find Full Text PDFDefending against future pandemics may require vaccine platforms that protect across a range of related pathogens. The presentation of multiple receptor-binding domains (RBDs) from evolutionarily-related viruses on a nanoparticle scaffold elicits a strong antibody response to conserved regions. Here we produce quartets of tandemly-linked RBDs from SARS-like betacoronaviruses coupled to the mi3 nanocage through a SpyTag/SpyCatcher spontaneous reaction.
View Article and Find Full Text PDFAntibody-mediated immunity plays a crucial role in protection against SARS-CoV-2 infection. We isolated a panel of neutralizing anti-receptor-binding domain (RBD) antibodies elicited upon natural infection and vaccination and showed that they recognize an immunogenic patch on the internal surface of the core RBD, which faces inwards and is hidden in the "down" state. These antibodies broadly neutralize wild type (Wuhan-Hu-1) SARS-CoV-2, Beta and Delta variants and some are effective against other sarbecoviruses.
View Article and Find Full Text PDFNat Nanotechnol
March 2023
Respiratory infections are the major cause of death from infectious disease worldwide. Multiplexed diagnostic approaches are essential as many respiratory viruses have indistinguishable symptoms. We created self-assembled DNA nanobait that can simultaneously identify multiple short RNA targets.
View Article and Find Full Text PDFAdenovirus vector vaccines have been widely and successfully deployed in response to coronavirus disease 2019 (COVID-19). However, despite inducing potent T cell immunity, improvement of vaccine-specific antibody responses upon homologous boosting is modest compared with other technologies. Here, we describe a system enabling modular decoration of adenovirus capsid surfaces with antigens and demonstrate potent induction of humoral immunity against these displayed antigens.
View Article and Find Full Text PDFProteins can be empowered via SpyTag for anchoring and nanoassembly, through covalent bonding to SpyCatcher partners. Here we generate a switchable version of SpyCatcher, allowing gentle purification of SpyTagged proteins. We introduce numerous histidines adjacent to SpyTag's binding site, giving moderate pH-dependent release.
View Article and Find Full Text PDFCurr Opin Biotechnol
February 2022
Virus-like particles (VLPs) can play important roles in prevention and therapy for infectious diseases and cancer. Here we describe recent advances in rational construction of VLP assemblies, as well as new approaches to enhance long-lasting antibody and CD8 T cell responses. DNA origami and computational protein design identified optimal spacing of antigens.
View Article and Find Full Text PDFProtein-based targeting reagents, such as antibodies and non-antibody scaffold proteins, are rapidly inactivated in the upper gastrointestinal (GI) tract. Hydrochloric acid in gastric juice denatures proteins and activates pepsin, concentrations of which reach 1 mg/mL in the mammalian stomach. Two stable scaffold proteins (nanobody and nanofitin), previously developed to be protease-resistant, were completely digested in less than 10 min at 100-fold lower concentration of pepsin than found in the stomach.
View Article and Find Full Text PDFCell Chem Biol
February 2022
There are many efficient ways to connect proteins at termini. However, connecting at a loop is difficult because of lower flexibility and variable environment. Here, we have developed DogCatcher, a protein that forms a spontaneous isopeptide bond with DogTag peptide.
View Article and Find Full Text PDFProteins span an extraordinary range of shapes, sizes and functionalities. Therefore generic approaches are needed to overcome this diversity and stream-line protein analysis or application. Here we review SpyTag technology, now used in hundreds of publications or patents, and its potential for detecting and controlling protein behaviour.
View Article and Find Full Text PDFThe Neisseria meningitidis protein FrpC contains a self-processing module (SPM) undergoing autoproteolysis via an aspartic anhydride. Herein, we establish NeissLock, using a binding protein genetically fused to SPM. Upon calcium triggering of SPM, the anhydride at the C-terminus of the binding protein allows nucleophilic attack by its target protein, ligating the complex.
View Article and Find Full Text PDFThere is need for effective and affordable vaccines against SARS-CoV-2 to tackle the ongoing pandemic. In this study, we describe a protein nanoparticle vaccine against SARS-CoV-2. The vaccine is based on the display of coronavirus spike glycoprotein receptor-binding domain (RBD) on a synthetic virus-like particle (VLP) platform, SpyCatcher003-mi3, using SpyTag/SpyCatcher technology.
View Article and Find Full Text PDF