Publications by authors named "Eulashini Chuntharpursat-Bon"

The large membrane protein PIEZO1 assembles as trimers to form exceptional mechanical force-sensing ion channels of eukaryotes. When these channels are activated by force, cell membrane permeability to calcium ions and other ions increases rapidly, coupling force to cell function through ionic control. In humans and other species, PIEZO1 is both widely expressed and functional across major systems that include the cardiovascular, haematological and musculoskeletal systems, thereby serving diverse needs.

View Article and Find Full Text PDF

PIEZOs form trimeric calcium-permeable nonselective cationic channels that serve mechanical sensing needs across eukaryotic biology. Forces act on the channels by causing their curved blades to flatten and decompact, leading to an activated state, but it is unclear how this is regulated to enable the channels to adapt to different contexts. To identify potential mechanisms, we performed coarse-grained and all-atom molecular dynamics simulations on human PIEZO1.

View Article and Find Full Text PDF

How cardiovascular activity interacts with lipid homeostasis is incompletely understood. We postulated a role for blood flow acting at endothelium in lipid regulatory organs. Transcriptome analysis was performed on livers from mice engineered for deletion of the flow-sensing PIEZO1 channel in endothelium.

View Article and Find Full Text PDF

Background & Aims: PIEZO1 and TRPV4 are mechanically and osmotically regulated calcium-permeable channels. The aim of this study was to determine the relevance and relationship of these channels in the contractile tone of the hepatic portal vein, which experiences mechanical and osmotic variations as it delivers blood to the liver from the intestines, gallbladder, pancreas and spleen.

Methods: Wall tension was measured in freshly dissected portal veins from adult male mice, which were genetically unmodified or modified for either a non-disruptive tag in native PIEZO1 or endothelial-specific PIEZO1 deletion.

View Article and Find Full Text PDF

Two prominent concepts for the sensing of shear stress by endothelium are the PIEZO1 channel as a mediator of mechanically activated calcium ion entry and the PECAM1 cell adhesion molecule as the apex of a triad with CDH5 and VGFR2. Here, we investigated if there is a relationship. By inserting a non-disruptive tag in native PIEZO1 of mice, we reveal in situ overlap of PIEZO1 with PECAM1.

View Article and Find Full Text PDF

Background And Purpose: The protein PIEZO1 forms mechanically activated, calcium-permeable, non-selective cation channels in numerous cell types from several species. Options for pharmacological modulation are limited and so we modified a small-molecule agonist at PIEZO1 channels (Yoda1) to increase the ability to modulate these channels.

Experimental Approach: Medicinal chemistry generated Yoda1 analogues that were tested in intracellular calcium and patch-clamp assays on cultured cells exogenously expressing human or mouse PIEZO1 or mouse PIEZO2.

View Article and Find Full Text PDF

PIEZO1 is a subunit of mechanically-activated, nonselective cation channels. Gain-of-function PIEZO1 mutations are associated with dehydrated hereditary stomatocytosis (DHS), a type of anaemia, due to abnormal red blood cell function. Here, we hypothesised additional effects on the heart.

View Article and Find Full Text PDF

Piezo1 forms mechanically activated nonselective cation channels that contribute to endothelial response to fluid flow. Here we reveal an important role in the control of capillary density. Conditional endothelial cell-specific deletion of Piezo1 in adult mice depressed physical performance.

View Article and Find Full Text PDF

There are many efficient ways to connect proteins at termini. However, connecting at a loop is difficult because of lower flexibility and variable environment. Here, we have developed DogCatcher, a protein that forms a spontaneous isopeptide bond with DogTag peptide.

View Article and Find Full Text PDF

Cellular energy metabolism is fundamental for all biological functions. Cellular proliferation requires extensive metabolic reprogramming and has a high energy demand. The Kv1.

View Article and Find Full Text PDF

Background And Purpose: The TRPC1, TRPC4, and TRPC5 proteins form homotetrameric or heterotetrameric, calcium-permeable cation channels that are involved in various disease states. Recent research has yielded specific and potent xanthine-based TRPC1/4/5 inhibitors. Here, we investigated the possibility of xanthine-based activators of these channels.

View Article and Find Full Text PDF

Pharmacological inhibition of uncontrolled cell growth with small-molecule inhibitors is a potential strategy for treating glioblastoma multiforme (GBM), the most malignant primary brain cancer. We showed that the synthetic small-molecule KHS101 promoted tumor cell death in diverse GBM cell models, independent of their tumor subtype, and without affecting the viability of noncancerous brain cell lines. KHS101 exerted cytotoxic effects by disrupting the mitochondrial chaperone heat shock protein family D member 1 (HSPD1).

View Article and Find Full Text PDF