Biochar is a carbon-rich and environmentally recalcitrant material, with strong potential for climate change mitigation. There is a need for rapid and accessible estimations of biochar stability, the resistance to biotic and abiotic degradation in soil. This study builds on previous work by integrating Fourier-transform infrared spectroscopy (FTIR) data with predictive modeling to estimate standard stability indicators: H:C and O:C molar ratios.
View Article and Find Full Text PDFIn the search for life on Mars, evaluating the biogenicity of morphological structures may be important, as they can provide a primary independent line of evidence for past life and can be used to target areas to focus further analyses. However, our experience with terrestrial materials indicates that the deleterious effects of diagenetic processes regularly make the assessment, and even detection, of microfossils and other microscopic biosignatures challenging. To improve our understanding of these effects on Mars, we collected samples that contained sheath-shaped extracellular structures produced by iron-oxidizing bacteria (FeOB) from a Mars analog circumneutral iron deposit and subjected them to artificial maturation by hydrous pyrolysis.
View Article and Find Full Text PDFThe search for evidence of past prebiotic or biotic activity on Mars will be enhanced by the return of samples to Earth laboratories. While impressive analytical feats have been accomplished by in situ missions on the red planet, accessing the capabilities of Earth's global laboratories will present a step change in data acquisition. Highly diagnostic markers of past life are biomarkers, organic molecules whose architecture can be attributed to once living organisms.
View Article and Find Full Text PDFACS Sustain Resour Manag
September 2024
In order to estimate the ability of biochar to sequester carbon as part of greenhouse gas removal technology, there is a need for rapid and accessible estimations of biochar stability. This study employs a novel method using Fourier transform infrared spectroscopy (FTIR) to predict common stability indicators, namely H:C and O:C molar ratios. Biochars derived from barley straw were produced at temperatures from 150 to 700 °C.
View Article and Find Full Text PDFThe Mars Sample Return mission intends to retrieve a sealed collection of rocks, regolith, and atmosphere sampled from Jezero Crater, Mars, by the NASA Perseverance rover mission. For all life-related research, it is necessary to evaluate water availability in the samples and on Mars. Within the first Martian year, Perseverance has acquired an estimated total mass of 355 g of rocks and regolith, and 38 μmoles of Martian atmospheric gas.
View Article and Find Full Text PDFSpace Sci Rev
November 2023
The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface-ice-ocean exchange; (2) characterize Europa's composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa's geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission.
View Article and Find Full Text PDFEvidence of liquid water is a primary indicator of habitability on the icy moons in our outer solar system as well as on terrestrial planets such as Mars. If liquid water-containing environments host life, some of its organic remains can be fossilized and preserved as organic biosignatures. However, inorganic materials may also be present and water-assisted organic-inorganic reactions can transform the organic architecture of biological remains.
View Article and Find Full Text PDFSpace missions concerned with life detection contain highly sensitive instruments for the detection of organics. Terrestrial contamination can interfere with signals of indigenous organics in samples and has the potential to cause false-positive biosignature detections, which may lead to incorrect suggestions of the presence of life elsewhere in the solar system. This study assessed the capability of solid-phase microextraction (SPME) as a method for monitoring organic contamination encountered by spacecraft hardware during assembly and operation.
View Article and Find Full Text PDFThe Perseverance rover landed in Jezero crater, Mars, in February 2021. We used the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument to perform deep-ultraviolet Raman and fluorescence spectroscopy of three rocks within the crater. We identify evidence for two distinct ancient aqueous environments at different times.
View Article and Find Full Text PDFDirect links between carbonaceous chondrites and their parent bodies in the solar system are rare. The Winchcombe meteorite is the most accurately recorded carbonaceous chondrite fall. Its pre-atmospheric orbit and cosmic-ray exposure age confirm that it arrived on Earth shortly after ejection from a primitive asteroid.
View Article and Find Full Text PDFLife detection missions to the outer solar system are concentrating on the icy moons of Jupiter and Saturn and their inferred subsurface oceans. Access to evidence of habitability, and possibly even life, is facilitated by the ejection of subsurface material in plumes and outgassing fissures. Orbiting spacecraft can intersect the plume material or detect past sputtered remnants of outgassed products and analyze the contents using instruments such as mass spectrometers.
View Article and Find Full Text PDFSci Total Environ
February 2023
Underground railway systems are recognised spaces of increased personal pollution exposure. We studied the number-size distribution and physico-chemical characteristics of ultrafine (PM), fine (PM) and coarse (PM) particles collected on a London underground platform. Particle number concentrations gradually increased throughout the day, with a maximum concentration between 18:00 h and 21:00 h (local time).
View Article and Find Full Text PDFAstrobiology
June 2022
The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems ( environment, biosphere, geochemical cycles). During the Working Group's deliberations, it became clear that a comprehensive assessment to predict the effects of introducing life in new environments or ecologies is difficult and practically impossible, even for terrestrial life and certainly more so for unknown extraterrestrial life.
View Article and Find Full Text PDFAncient martian organic matter is likely to take the form of kerogen-like recalcitrant macromolecular organic matter (MOM), existing in close association with reactive mineral surfaces, especially iron oxides. Detecting and identifying a biological origin for martian MOM will therefore be of utmost importance for life-detection efforts at Mars. We show that Type I and Type IV kerogens provide effective analogues for putative martian MOM of biological and abiological (meteoric) provenances, respectively.
View Article and Find Full Text PDFAstrobiology
February 2022
The icy moons of the outer Solar System display evidence of subsurface liquid water and, therefore, potential habitability for life. Flybys of Saturn's moon Enceladus by the Cassini spacecraft have provided measurements of material from plumes that suggest hydrothermal activity and the presence of organic matter. Jupiter's moon Europa may have similar plumes and is the target for the forthcoming Europa Clipper mission that carries a high mass resolution and high sensitivity mass spectrometer, called the MAss Spectrometer for Planetary EXploration (MASPEX), with the capability for providing detailed characterization of any organic materials encountered.
View Article and Find Full Text PDFAnswering the question of whether life ever existed on Mars is a key goal of both NASA's and ESA's imminent Mars rover missions. The obfuscatory effects of oxidizing salts, such as perchlorates and sulfates, on organic matter during thermal decomposition analysis techniques are well established. Less well studied are the transformative effects of iron oxides and (oxy)hydroxides, which are present in great abundances in the martian regolith.
View Article and Find Full Text PDFComparisons between the preservation potential of Mars-analog environments have historically been qualitative rather than quantitative. Recently, however, laboratory-based artificial maturation combined with kinetic modeling techniques have emerged as a potential means by which the preservation potential of solvent-soluble organic matter can be quantified in various Mars-analog environments. These methods consider how elevated temperatures, pressures, and organic-inorganic interactions influence the degradation of organic biomarkers post-burial.
View Article and Find Full Text PDFThe search for, and characterization of, organic matter on Mars is central to efforts in identifying habitable environments and detecting evidence of life in the martian surface and near surface. Iron oxides are ubiquitous in the martian regolith and are known to be associated with the deposition and preservation of organic matter in certain terrestrial environments, thus iron oxide-rich sediments are potential targets for life-detection missions. The most frequently used protocol for martian organic matter characterization (also planned for use on ExoMars) has been thermal extraction for the transfer of organic matter to gas chromatography-mass spectrometry (GC-MS) detectors.
View Article and Find Full Text PDFAcidic iron- and sulfur-rich streams are appropriate analogues for the late Noachian and early Hesperian periods of martian history, when Mars exhibited extensive habitable environments. Any past life on Mars may have left behind diagnostic evidence of life that could be detected at the present day. For effective preservation, these remains must have avoided the harsh radiation flux at the martian surface, survived geological storage for billions of years, and remained detectable within their geochemical environment by analytical instrument suites used on Mars today, such as thermal extraction techniques.
View Article and Find Full Text PDFAstrobiology
January 2020
Samples that are likely to contain evidence of past life on Mars must have been deposited when and where environments exhibited habitable conditions. Mars analog sites provide the opportunity to study how life could have exploited such habitable conditions. Acidic iron- and sulfur-rich streams are good geochemical analogues for the late Noachian and early Hesperian, periods of martian history where habitable conditions were widespread.
View Article and Find Full Text PDFConclusively detecting, or ruling out the possibility of, life on the icy moons of the outer Solar System will require spacecraft missions to undergo rigorous planetary protection and contamination control procedures to achieve extremely low levels of organic terrestrial contamination. Contamination control is necessary to avoid forward contamination of the body of interest and to avoid the detection of false-positive signals, which could either mask indigenous organic chemistry of interest or cause an astrobiological false alarm. Here we test a new method for rapidly and inexpensively assessing the organic cleanliness of spaceflight hardware surfaces using solid phase micro extraction (SPME) fibers to directly swab surfaces.
View Article and Find Full Text PDFThe detection of chlorinated hydrocarbons by Curiosity on Mars has been attributed to the presence of unidentified indigenous organic matter. Similarly, oxychlorines on Earth have been proposed to be responsible for the apparent lack of organics in the Atacama Desert. The presence of perchlorate (ClO) poses a unique challenge to the measurement of organic matter due to the oxidizing power of oxychlorines during commonly used pyrolysis-gas chromatography-mass spectrometry (py-GC-MS) methods.
View Article and Find Full Text PDFThe icy moons of the outer Solar System present the possibility of subsurface water, habitable conditions, and potential abodes for life. Access to evidence that reveals the presence of life on the icy moons can be facilitated by plumes that eject material from the subsurface out into space. One instrument capable of performing life-search investigations at the icy moons is the MAss SPectrometer for Planetary EXploration/Europa (MASPEX), which constitutes a high-resolution, high-sensitivity multibounce time-of-flight mass spectrometer capable of measuring trace amounts (ppb) of organic compounds.
View Article and Find Full Text PDFPast life on Mars will have generated organic remains that may be preserved in present day Mars rocks. The most recent period in the history of Mars that retained widespread surface waters was the late Noachian and early Hesperian and thus possessed the potential to sustain the most evolved and widely distributed martian life. Guidance for investigating late Noachian and early Hesperian rocks is provided by studies of analogous acidic and sulfur-rich environments on Earth.
View Article and Find Full Text PDF