98%
921
2 minutes
20
In the search for life on Mars, evaluating the biogenicity of morphological structures may be important, as they can provide a primary independent line of evidence for past life and can be used to target areas to focus further analyses. However, our experience with terrestrial materials indicates that the deleterious effects of diagenetic processes regularly make the assessment, and even detection, of microfossils and other microscopic biosignatures challenging. To improve our understanding of these effects on Mars, we collected samples that contained sheath-shaped extracellular structures produced by iron-oxidizing bacteria (FeOB) from a Mars analog circumneutral iron deposit and subjected them to artificial maturation by hydrous pyrolysis. Simulated diagenesis induced a phase change in the mineralogy of the structures, from ferrihydrite to crystalline iron oxides. We found that conditions associated with the onset of this phase change were correlated with the start of significant degradation of the extracellular structures. Our results reveal the sensitivity of remains of FeOB to diagenesis, which provides insights for improved targeting of astrobiological missions to areas on Mars that are most conducive to morphological biosignature preservation. Additionally, these results compel increased scrutiny of FeOB-like purported biosignatures if their mineralogy is dominated by crystalline iron oxides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ast.2024.0098 | DOI Listing |
Geobiology
May 2025
Grant Institute, School of GeoSciences, University of Edinburgh, Edinburgh, Scotland.
Microscopic tubules and filaments composed of iron minerals occur in various rock types of all ages. Although typically lacking carbonaceous matter, many are reasonably interpreted as the remains of filamentous microorganisms coated with crystalline iron oxyhydroxides. Iron-oxidizing bacteria (IOB) acquire such a coating naturally during life.
View Article and Find Full Text PDFFront Microbiol
April 2025
State Key Laboratory of Petroleum Pollution Control, China University of Petroleum, Beijing, China.
The dual role of microorganisms in metal corrosion and corrosion inhibition reflects their complex biochemical interactions. In terms of corrosion, certain microorganisms accelerate metal oxidation by producing acidic metabolites or facilitating electrochemical processes, thereby causing damage to the material. Conversely, under specific conditions, they can form biofilms and/or biominerals that create protective layers, reducing the oxidation rate and delaying corrosion.
View Article and Find Full Text PDFAstrobiology
March 2025
Department of Earth Science and Engineering, Imperial College London, London, United Kingdom.
In the search for life on Mars, evaluating the biogenicity of morphological structures may be important, as they can provide a primary independent line of evidence for past life and can be used to target areas to focus further analyses. However, our experience with terrestrial materials indicates that the deleterious effects of diagenetic processes regularly make the assessment, and even detection, of microfossils and other microscopic biosignatures challenging. To improve our understanding of these effects on Mars, we collected samples that contained sheath-shaped extracellular structures produced by iron-oxidizing bacteria (FeOB) from a Mars analog circumneutral iron deposit and subjected them to artificial maturation by hydrous pyrolysis.
View Article and Find Full Text PDFFront Microbiol
January 2025
College of Grassland Science, Xinjiang Agricultural University, Urumqi, China.
Iron (Fe) minerals possess a huge specific surface area and high adsorption affinity, usually considered as "rust tanks" of organic carbon (OC), playing an important role in global carbon storage. Microorganisms can change the chemical form of Fe by producing Fe-chelating agents such as side chains and form a stable complex with Fe(III), which makes it easier for microorganisms to use. However, in seasonal frozen soil thawing, the succession of soil Fe-cycling microbial communities and their coupling relationship with Fe oxides and Fe-bound organic carbon (Fe-OC) remains unclear.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
National Research and Development Institute for Forestry "Marin Drăcea"-INCDS, 128 Boulvard Eroilor, 077190 Voluntari, Romania.
Global concerns about pollution reduction, associated with the continuous technological development of electronic equipment raises challenge for the future regarding lithium-ion batteries exploitation, use, and recovery through recycling of critical metals. Several human and environmental issues are reported, including related diseases caused by lithium waste. Lithium in Li-ion batteries can be recovered through various methods to prevent environmental contamination, and Li can be reused as a recyclable resource.
View Article and Find Full Text PDF