98%
921
2 minutes
20
Ancient martian organic matter is likely to take the form of kerogen-like recalcitrant macromolecular organic matter (MOM), existing in close association with reactive mineral surfaces, especially iron oxides. Detecting and identifying a biological origin for martian MOM will therefore be of utmost importance for life-detection efforts at Mars. We show that Type I and Type IV kerogens provide effective analogues for putative martian MOM of biological and abiological (meteoric) provenances, respectively. We analyze the pyrolytic breakdown products when these kerogens are mixed with mineral matrices highly relevant for the search for life on Mars. We demonstrate that, using traditional thermal techniques as generally used by the Sample Analysis at Mars and Mars Organic Molecule Analyser instruments, even the breakdown products of highly recalcitrant MOM are transformed during analysis in the presence of reactive mineral surfaces, particularly iron. Analytical transformation reduces the diagnostic ability of this technique, as detected transformation products of both biological and abiological MOM may be identical (low molecular weight gas phases and benzene) and indistinguishable. The severity of transformational effects increased through calcite < kaolinite < hematite < nontronite < magnetite < goethite. Due to their representation of various habitable aqueous environments and the preservation potential of organic matter by iron, it is not advisable to completely avoid iron-rich strata. We conclude that hematite-rich localities, with evidence of extensive aqueous alteration of originally reducing phases, such as the Vera Rubin Ridge, may be relatively promising targets for identifying martian biologically sourced MOM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ast.2021.0074 | DOI Listing |
Environ Monit Assess
September 2025
School of Materials Engineering, Changzhou Vocational Institute of Industry Technology, Changzhou, 213000, People's Republic of China.
A multi-indicator framework was developed to resolve multi-source pollution in highly urbanized rivers, demonstrated in the Qinhuai River Basin, Nanjing, China. Water quality index (WQI) stratification was integrated with dissolved organic matter (DOM) fluorescence components, hydrochemical ions, and conventional parameters and analyzed using positive matrix factorization (PMF). Correlation analysis further elucidated source compositions and interactions.
View Article and Find Full Text PDFNature
September 2025
Los Alamos National Laboratory, Los Alamos, NM, USA.
The Perseverance rover has explored and sampled igneous and sedimentary rocks within Jezero Crater to characterize early Martian geological processes and habitability and search for potential biosignatures. Upon entering Neretva Vallis, on Jezero Crater's western edge, Perseverance investigated distinctive mudstone and conglomerate outcrops of the Bright Angel formation. Here we report a detailed geological, petrographic and geochemical survey of these rocks and show that organic-carbon-bearing mudstones in the Bright Angel formation contain submillimetre-scale nodules and millimetre-scale reaction fronts enriched in ferrous iron phosphate and sulfide minerals, likely vivianite and greigite, respectively.
View Article and Find Full Text PDFNat Nanotechnol
September 2025
School of Engineering, The University of Tokyo, Tokyo, Japan.
Active metasurfaces incorporating electro-optic materials enable high-speed free-space optical modulators that show great promise for a wide range of applications, including optical communication, sensing and computing. However, the limited light-matter interaction lengths in metasurfaces typically require high driving voltages exceeding tens of volts to achieve satisfactory modulation. Here we present low-voltage, high-speed free-space optical modulators based on silicon-organic-hybrid metasurfaces with dimerized-grating-based nanostructures.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
The potential of PM to cause lung cancer has been well established; however, evidence regarding which specific components are responsible remains limited. We investigated dissolved organic matter (DOM) in PM using high-resolution mass spectrometry (HRMS) and cellular DNA damage assays to elucidate molecular composition and sources of carcinogenic components. Our analysis revealed hundreds of genotoxic compounds, with condensed aromatic amines predominating in number, abundance, and contribution to overall genotoxicity.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
Humic acid (HA) and fulvic acid (FA) are the most abundant components of the organic matter in the compost. However, the key chemical structures for the bioactivity of HA/FA and how these structures being affected by composting conditions are not fully understood. The changes in chemical compositions between HA and FA were primarily driven by differences in the contents of carboxyl C, aromatic C, O- alkyl C and C/N ratio.
View Article and Find Full Text PDF