Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Analogous to the border customs, liver mainly functions as a filter to detoxify chemicals and metabolite administered orally or intravenously. Besides, the liver cancer cells overexpress the drug exporters which cause high drug effluxion from liver cancer cells, leading to chemoresistance and a diminished chemotherapeutic effect on liver cancer.
View Article and Find Full Text PDFRubber is a fascinating material in both industry and daily life. The development of elastomeric material in nanotechnology is imperative due to its economic and technological potential. By virtue of their distinctive physicochemical properties, nucleic acids have been extensively explored in material science.
View Article and Find Full Text PDFChemical dendrimers have been shown to be a promising drug delivery platform due to their advantageous properties such as monodispersity, multivalency and branched structure. Taking advantage of self-assembly and its intrinsic negative charge, we used RNA as the building block for dendrimer construction to eliminate complex synthesis procedures and cationic charge-related toxicity. Oligo ribonucleotides produced by solid phase chemical synthesis allow the large-scale manufacture of homologous RNA dendrimers.
View Article and Find Full Text PDFPaclitaxel is widely used in cancer treatments, but poor water-solubility and toxicity raise serious concerns. Here we report an RNA four-way junction nanoparticle with ultra-thermodynamic stability to solubilize and load paclitaxel for targeted cancer therapy. Each RNA nanoparticle covalently loads twenty-four paclitaxel molecules as a prodrug.
View Article and Find Full Text PDFStructural RNA domains are widely involved in the regulation of biological functions, such as gene expression, gene modification, and gene repair. Activity of these dynamic regions depends sensitively on the global fold of the RNA, in particular, on the binding affinity of individual conformations to effector molecules in solution. Consequently, both the 1) structure and 2) conformational dynamics of noncoding RNAs prove to be essential in understanding the coupling that results in biological function.
View Article and Find Full Text PDFJ Control Release
April 2018
RNA can serve as powerful building blocks for bottom-up fabrication of nanostructures for biotechnological and biomedical applications. In addition to current self-assembly strategies utilizing base pairing, motif piling and tertiary interactions, we reported for the first time the formation of RNA based micellar nanoconstruct with a cholesterol molecule conjugated onto one helical end of a branched pRNA three-way junction (3WJ) motif. The resulting amphiphilic RNA micelles consist of a hydrophilic RNA head and a covalently linked hydrophobic lipid tail that can spontaneously assemble in aqueous solution via hydrophobic interaction.
View Article and Find Full Text PDFRNA nanotechnology is rapidly emerging. Due to advantageous pharmacokinetics and favorable in vivo biodistribution, RNA nanoparticles have shown promise in targeted delivery of therapeutics. RNA nanotechnology applies bottom-up assembly, thus elucidation of the mechanism of interaction between multiple components is of fundamental importance.
View Article and Find Full Text PDFMetabolite-dependent conformational switching in RNA riboswitches is now widely accepted as a critical regulatory mechanism for gene expression in bacterial systems. More recently, similar gene regulation mechanisms have been found to be important for viral systems as well. One of the most abundant and best-studied systems is the tRNA-like structure (TLS) domain, which has been found to occur in many plant viruses spread across numerous genera.
View Article and Find Full Text PDFIntroduction: Multidrug resistance and the appearance of incurable diseases inspire the quest for potent therapeutics.
Areas Covered: We review a new methodology in designing potent drugs by targeting multi-subunit homomeric biological motors, machines or complexes with Z > 1 and K = 1, where Z is the stoichiometry of the target, and K is the number of drugged subunits required to block the function of the complex. The condition is similar to a series electrical circuit of Christmas decorations: failure of one light bulb causes the entire lighting system to lose power.
Methods Mol Biol
January 2016
Cumulative progress in nanoparticle development has opened a new era of targeted delivery of therapeutics to cancer cells and tissue. However, developing proper detection methods has lagged behind resulting in the lack of precise evaluation and monitoring of the systemically administered nanoparticles. RNA nanoparticles derived from the bacteriophage phi29 DNA packaging motor pRNA have emerged as a new generation of drugs for cancer therapy.
View Article and Find Full Text PDFRNA nanotechnology is an emerging field at the interface of biochemistry and nanomaterials that shows immense promise for applications in nanomedicines, therapeutics and nanotechnology. Noncoding RNAs, such as siRNA, miRNA, ribozymes, and riboswitches, play important roles in the regulation of cellular processes. They carry out highly specific functions on a compact and efficient footprint.
View Article and Find Full Text PDFCell Biosci
October 2014
Biomotors are extensively involved in biological processes including cell mitosis, bacterial binary fission, DNA replication, DNA repair, homologous recombination, Holliday junction resolution, RNA transcription, and viral genome packaging. Traditionally, they were classified into two categories including linear and rotation motors. In 2013, a third class of motor by revolution mechanism without rotation was discovered.
View Article and Find Full Text PDFWe recently reported the design and synthesis of a series of conformationally dynamic chromophores that are built on the C(3)-symmetric tris(N-salicylideneaniline) platform. This system utilizes cooperative structural folding-unfolding motions for fluorescence switching, which is driven by the assembly and disassembly of hydrogen bonds between the rigid core and rotatable peripheral part of the molecule. Here, we report detailed time-resolved spectroscopic studies to investigate the structure-property relationships of a series of functionalized tris(N-salicylideneaniline)s.
View Article and Find Full Text PDFVirus life stages often constitute a complex chain of events, difficult to track in vivo and in real-time. Challenges are associated with spatial and time limitations of current probes: most viruses are smaller than the diffraction limit of optical microscopes while the entire time scale of virus dynamics spans over 8 orders of magnitude. Thus, virus processes such as entry, disassembly, and egress have generally remained poorly understood.
View Article and Find Full Text PDFA covalently triggered fluorescence turn-on detection scheme has been implemented for a tris(N-salicylideneamine)-derived dynamic fluorophore. Selective cleavage of strategically placed Si-O bonds by fluoride ion induces spring-loaded conformational transitions that are tightly coupled to fluorescence enhancement.
View Article and Find Full Text PDF