Publications by authors named "Satheesh Ellipilli"

Fluorescence biomarkers are crucial for understanding structure and dynamics of biological macromolecules. However, limitations in binding affinity and fluorescence response remain challenging for many existing markers. In this study, we synthesized a carbazole-rhodanine hybrid molecule (CrRh) and evaluated its potential as a fluorescent biomarker, focusing on its binding affinity and fluorescence behaviour upon interaction with serum proteins (bovine serum albumin (BSA) and human serum albumin (HSA)).

View Article and Find Full Text PDF

Small molecule, peptide, and protein-based drugs have been developed over decades to treat various diseases. The importance of gene therapy as an alternative to traditional drugs has increased after the discovery of gene-based drugs such as Gendicine for cancer and Neovasculgen for peripheral artery disease. Since then, the pharma sector is focusing on developing gene-based drugs for various diseases.

View Article and Find Full Text PDF

Liver cancer such as hepatocellular carcinoma (HCC) poorly responds to chemotherapeutics as there are no effective means to deliver the drugs to liver cancer. Here we report GalNAc decorated exosomes as cargo for targeted delivery of Paclitaxel (PTX) and miR122 to liver tumors as an effective means to inhibit the HCC. Exosomes (Exos) are nanosized extracellular vesicles that deliver a payload to cancer cells effectively.

View Article and Find Full Text PDF
Article Synopsis
  • The COVID-19 mRNA's positive single-stranded nature allows for rapid mutation, leading to the emergence of several variants, including subvariants of Omicron.
  • Current diagnostic methods, like RT-PCR and antibody detection, are often time-consuming and may not effectively identify mutant strains, emphasizing the need for simpler and faster testing solutions.
  • A new at-home diagnosis method using a DNA aptamer linked to gold nanoparticles and existing antibody technologies has been proposed, enabling detection of COVID-19's spike proteins within 2 hours at a low cost of under $5.
View Article and Find Full Text PDF

RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Analogous to the border customs, liver mainly functions as a filter to detoxify chemicals and metabolite administered orally or intravenously. Besides, the liver cancer cells overexpress the drug exporters which cause high drug effluxion from liver cancer cells, leading to chemoresistance and a diminished chemotherapeutic effect on liver cancer.

View Article and Find Full Text PDF

Genetically encoded fluorescent proteins or small-molecule probes that recognize specific protein binding partners can be used to label proteins to study their localization and function with fluorescence microscopy. However, these approaches are limited in signal-to-background resolution and the ability to temporally control labeling. Herein, we describe a covalent protein labeling technique using a fluorogenic malachite green probe functionalized with a photoreactive cross-linker.

View Article and Find Full Text PDF

Branched DNAs (bDNAs) having comb-like structures have found wide utility in molecular diagnostics and DNA nanotechnology. bDNAs can be generated either by designing and assembling linear DNA molecules into rigid non-covalent structures or by using an orthogonally protected branching unit to synthesize covalently linked structures. Despite the advantages of the covalently linked structures, use of this motif has been hampered by the challenging synthesis of appropriately protected branching monomers.

View Article and Find Full Text PDF

Fluorine incorporation into organic molecules imparts favorable physicochemical properties such as lipophilicity, solubility and metabolic stability necessary for drug action. Toward such applications using peptide nucleic acids (PNA), we herein report the chemical synthesis of fluorinated PNA monomers and biophysical studies of derived PNA oligomers containing fluorine in in the acetyl side chain (-CHF-CO-) bearing nucleobase uracil (5-F/5-CF3-U). The crystal structures of fluorinated racemic PNA monomers reveal interesting base pairing of enantiomers and packing arrangements directed by the chiral F substituent.

View Article and Find Full Text PDF

Perfluoro undecanoyl chain conjugated peptide nucleic acids (PNAs) show 2.5 to 3 fold higher cellular uptake efficiency in NIH 3T3 and HeLa cells compared to simple undecanoyl PNAs. Fluorination of PNAs leads to the formation of lower size (∼100-250 nm) nanoparticles compared to larger size (∼500 nm) nanoparticles from non-fluorinated PNAs, thereby improving the efficiency of cell penetration.

View Article and Find Full Text PDF

Fluorous PNA analogues possessing fluorine as inherent part of aminopropylglycine (apg) backbone (γ-CF2-apg PNA) have been synthesized and evaluated for biophysical and cell penetrating properties. These form duplexes of higher thermal stability with cRNA than cDNA, although destabilized compared to duplexes of standard aeg-PNA. Cellular uptake of the fluorinated γ-CF2-apg PNAs in NIH 3T3 and HeLa cells was 2-3-fold higher compared to that of nonfluorinated apg PNA, with NIH 3T3 cells showing better permeability compared to HeLa cells.

View Article and Find Full Text PDF