Publications by authors named "Sandeep Palvai"

Nanoscale colloidal self-assembly is an exciting approach to yield superstructures with properties distinct from those of individual nanoparticles. However, the bottom-up self-assembly of 3D nanoparticle superstructures typically requires extensive chemical functionalization, harsh conditions, and a long preparation time, which are undesirable for biomedical applications. Here, we report the directional freezing of porous silica nanoparticles (PSiNPs) as a simple and versatile technique to create anisotropic 3D superstructures with hierarchical porosity afforded by microporous PSiNPs and newly generated meso- and macropores between the PSiNPs.

View Article and Find Full Text PDF
Article Synopsis
  • Localized drug delivery using Tissue-Reactive Anchoring Pharmaceuticals (TRAPs) offers a novel method for treating stiff tumors like desmoplastic cancers without systemic side effects.
  • TRAPs are modified potent drugs that are injected into tumors, where they react with tissue components to create stable, local drug depots for sustained release.
  • TRAP paclitaxel, a variant that improves drug solubility and effectiveness, has shown enhanced tumor cell death and prolonged antitumor efficacy compared to traditional free drug methods.
View Article and Find Full Text PDF

Stimuli-responsive, on-demand release of drugs from drug-eluting depots could transform the treatment of many local diseases, providing intricate control over local dosing. However, conventional on-demand drug release approaches rely on locally implanted drug depots, which become spent over time and cannot be refilled or reused without invasive procedures. New strategies to noninvasively refill drug-eluting depots followed by on-demand release could transform clinical therapy.

View Article and Find Full Text PDF

Bioorthogonal click reactions yielding stable and irreversible adducts are in high demand for applications, including in biomolecular labeling, diagnostic imaging, and drug delivery. Previously, we reported a novel bioorthogonal "click" reaction based on the coupling of ortho-acetyl arylboronates and thiosemicarbazide-functionalized nopoldiol. We now report that a detailed structural analysis of the arylboronate/nopoldiol adduct by X-ray crystallography and B NMR reveals that the bioorthogonal reactants form, unexpectedly, a tetracyclic adduct through the cyclization of the distal nitrogen into the semithiocarbazone leading to a strong B-N dative bond and two new 5-membered rings.

View Article and Find Full Text PDF

Injectable alginate hydrogels have demonstrated utility in tissue engineering and drug delivery applications due in part to their mild gelation conditions, low host responses and chemical versatility. Recently, the potential of these gels has expanded with the introduction of refillable hydrogel depots - alginate gels chemically decorated with click chemistry groups to efficiently capture prodrug refills from the blood. Unfortunately, high degrees of click group substitution on alginate lead to poor viscoelastic properties and loss of ionic cross-linking.

View Article and Find Full Text PDF

Mitochondrion has emerged as one of the unconventional targets in next-generation cancer therapy. Hence, small molecules targeting mitochondria in cancer cells have immense potential in the next-generation anticancer therapeutics. In this report, we have synthesized a library of hydrazide-hydrazone-based small molecules and identified a novel compound that induces mitochondrial outer membrane permeabilization by inhibiting antiapoptotic B-cell CLL/lymphoma 2 (Bcl-2) family proteins followed by sequestration of proapoptotic cytochrome .

View Article and Find Full Text PDF

Breast cancer is the most devastating disease among females globally. Conventional chemotherapeutic regimen relies on the use of highly cytotoxic drugs as monotherapy and combination therapy leading to severe side effects to the patients as collateral damage. Moreover, combining hydrophobic and hydrophilic drugs create erratic biodistribution and suboptimal medicinal outcome.

View Article and Find Full Text PDF

Colon cancer has emerged as one of the most devastating diseases in the whole world. Mitogen-activated protein kinase (MAPK)-phosphatidylinsitol-3-kinase (PI3K) signaling hub has gained lots of attention due to its deregulation in colon cancer cells. However, selective targeting of oncogenic MAPK-PI3K hub in colon cancer has remained highly challenging, hence it has mostly been unexplored.

View Article and Find Full Text PDF

RAS-RAF-MEK-ERK cascade in mitogen activated protein kinase (MAPK) signaling has been hijacked in colon cancer. However, the selective targeting of MAPK signaling components in colon cancer cells has remained a surmountable challenge. To address this, we have engineered hyaluronic acid cloaked 154 nm diameter oleic acid nanoparticles (HA-OA-NPs) comprising both an ERK inhibitor (AZD6244) and a DNA damaging drug (cisplatin).

View Article and Find Full Text PDF

Mesoporous silica nano-channel (MCM-41) based molecular switching of a biologically important anticancer drug, namely, ellipticine (EPT) has been utilized to probe its efficient loading onto MCM-41, and its subsequent release to intra-cellular biomolecules, like DNA. By exploiting various spectroscopic techniques (like, steady state fluorescence, time-resolved fluorescence and circular dichroism), it has been shown that EPT can be easily translocated from MCM-41 to DNA without using any external stimulant. Blue emission of EPT in a polar aprotic solvent, i.

View Article and Find Full Text PDF

Fluorine incorporation into organic molecules imparts favorable physicochemical properties such as lipophilicity, solubility and metabolic stability necessary for drug action. Toward such applications using peptide nucleic acids (PNA), we herein report the chemical synthesis of fluorinated PNA monomers and biophysical studies of derived PNA oligomers containing fluorine in in the acetyl side chain (-CHF-CO-) bearing nucleobase uracil (5-F/5-CF3-U). The crystal structures of fluorinated racemic PNA monomers reveal interesting base pairing of enantiomers and packing arrangements directed by the chiral F substituent.

View Article and Find Full Text PDF

Phosphatidylinositol-3-kinase (PI3K) signaling has been hijacked in different types of cancers. Hence, PI3K inhibitors have emerged as novel targeted therapeutics in cancer treatment as mono and combination therapy along with other DNA damaging drugs. However, targeting PI3K signaling with small molecules leads to the emergence of drug resistance and severe side effects to the cancer patients.

View Article and Find Full Text PDF