Nucleic Acids Res
June 2025
Small-molecule RNA binders have emerged as an important pharmacological modality. A profound understanding of the ligand selectivity, binding mode, and influential factors governing ligand engagement with RNA targets is the foundation for rational ligand design. Here, we report a novel class of coumarin derivatives exhibiting selective binding affinity towards single G RNA bulges.
View Article and Find Full Text PDFSmall-molecule RNA binders have emerged as an important pharmacological modality. A profound understanding of the ligand selectivity, binding mode, and influential factors governing ligand engagement with RNA targets is the foundation for rational ligand design. Here, we report a novel class of coumarin derivatives exhibiting selective binding affinity towards single G RNA bulges.
View Article and Find Full Text PDFThe conformational dynamics of single-stranded nucleic acids are fundamental for nucleic acid folding and function. However, their elementary chain dynamics have been difficult to resolve experimentally. Here we employ a combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, and nanophotonic enhancement to determine the conformational ensembles and rapid chain dynamics of short single-stranded nucleic acids in solution.
View Article and Find Full Text PDFThe 3' end of the hepatitis C virus genome is terminated by a highly conserved, 98 nt sequence called 3'X. This untranslated structural element is thought to regulate several essential RNA-dependent processes associated with infection. 3'X has two proposed conformations comprised of either three or two stem-loop structures that result from the different base-pairing interactions within the first 55 nt.
View Article and Find Full Text PDFStudying RNA-ligand interactions and quantifying their binding thermodynamics and kinetics are of particular relevance in the field of drug discovery. Here, we combined biochemical binding assays and accelerated molecular simulations to investigate ligand binding and dissociation in RNA using the theophylline-binding RNA as a model system. All-atom simulations using a Ligand Gaussian accelerated Molecular Dynamics method (LiGaMD) have captured repetitive binding and dissociation of theophylline and caffeine to RNA.
View Article and Find Full Text PDFThe hepatitis C virus is associated with nearly 300,000 deaths annually. At the core of the virus is an RNA-protein complex called the nucleocapsid, which consists of the viral genome and many copies of the core protein. Because the assembly of the nucleocapsid is a critical step in viral replication, a considerable amount of effort has been devoted to identifying antiviral therapeutics that can bind to the core protein and disrupt assembly.
View Article and Find Full Text PDFBiophys Rep (N Y)
September 2021
It is well documented that the structure, and thus function, of nucleic acids depends on the chemical environment surrounding them, which often includes potential proteinaceous binding partners. The nonpolar amino acid side chains of these proteins will invariably alter the polarity of the local chemical environment around the nucleic acid. However, we are only beginning to understand how environmental polarity generally influences the structural and energetic properties of RNA folding.
View Article and Find Full Text PDFNucleic Acids Res
August 2021
Risdiplam is the first approved small-molecule splicing modulator for the treatment of spinal muscular atrophy (SMA). Previous studies demonstrated that risdiplam analogues have two separate binding sites in exon 7 of the SMN2 pre-mRNA: (i) the 5'-splice site and (ii) an upstream purine (GA)-rich binding site. Importantly, the sequence of this GA-rich binding site significantly enhanced the potency of risdiplam analogues.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-related CoVs encode 3 tandem macrodomains within nonstructural protein 3 (nsp3). The first macrodomain, Mac1, is conserved throughout CoVs and binds to and hydrolyzes mono-ADP-ribose (MAR) from target proteins. Mac1 likely counters host-mediated antiviral ADP-ribosylation, a posttranslational modification that is part of the host response to viral infections.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2020
We demonstrate how a recently developed nanofluidic device can be used to study protein-induced compaction of genome-length DNA freely suspended in solution. The protein we use in this study is the hepatitis C virus core protein (HCVcp), which is a positively charged, intrinsically disordered protein. Using nanofluidic devices in combination with fluorescence microscopy, we observe that protein-induced compaction preferentially begins at the ends of linear DNA.
View Article and Find Full Text PDFUnlabelled: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-like-CoVs encode 3 tandem macrodomains within non-structural protein 3 (nsp3). The first macrodomain, Mac1, is conserved throughout CoVs, and binds to and hydrolyzes mono-ADP-ribose (MAR) from target proteins. Mac1 likely counters host-mediated anti-viral ADP-ribosylation, a posttranslational modification that is part of the host response to viral infections.
View Article and Find Full Text PDFCurr Opin Struct Biol
February 2020
Recent evidence shows that oppositely charged intrinsically disordered proteins (IDPs) can form high-affinity complexes that involve neither the formation of secondary or tertiary structure nor site-specific interactions between individual residues. Similar electrostatically dominated interactions have also been identified for positively charged IDPs binding to nucleic acids. These highly disordered polyelectrolyte complexes constitute an extreme case within the spectrum of biomolecular interactions involving disorder.
View Article and Find Full Text PDFRNA chaperones are proteins that aid in the folding of nucleic acids, but remarkably, many of these proteins are intrinsically disordered. How can these proteins function without a well-defined three-dimensional structure? Here, we address this question by studying the hepatitis C virus core protein, a chaperone that promotes viral genome dimerization. Using single-molecule fluorescence spectroscopy, we find that this positively charged disordered protein facilitates the formation of compact nucleic acid conformations by acting as a flexible macromolecular counterion that locally screens repulsive electrostatic interactions with an efficiency equivalent to molar salt concentrations.
View Article and Find Full Text PDFIntrinsically disordered proteins (IDPs) sample structurally diverse ensembles. Characterizing the underlying distributions of conformations is a key step toward understanding the structural and functional properties of IDPs. One increasingly popular method for obtaining quantitative information on intramolecular distances and distributions is single-molecule Förster resonance energy transfer (FRET).
View Article and Find Full Text PDFThe association of biomolecules is the elementary event of communication in biology. Most mechanistic information of how the interactions between binding partners form or break is, however, hidden in the transition paths, the very short parts of the molecular trajectories from the encounter of the two molecules to the formation of a stable complex. Here we use single-molecule spectroscopy to measure the transition path times for the association of two intrinsically disordered proteins that form a folded dimer upon binding.
View Article and Find Full Text PDFWe combine single-molecule Förster resonance energy transfer (single-molecule FRET) experiments with extensive all-atom molecular dynamics (MD) simulations (>100 μs) to characterize the conformational ensembles of single-stranded (ss) DNA and RNA in solution. From MD simulations with explicit dyes attached to single-stranded nucleic acids via flexible linkers, we calculate FRET efficiencies and fluorescence anisotropy decays. We find that dispersion-corrected water models alleviate the problem of overly abundant interactions between fluorescent dyes and the aromatic ring systems of nucleobases.
View Article and Find Full Text PDFDissipation and friction influence the conformational dynamics of biological polymers as they traverse barriers on rugged free energy surfaces. It is well established that the "speed limit" for macromolecular folding is dictated by a combination of (i) solvent friction, which depends on solvent viscosity, η, and (ii) internal friction, which is independent of solvent and depends solely on the molecular folding pathway. In this work, single-molecule Förster resonance energy transfer (FRET) confocal spectroscopy is used to study viscosity-dependent folding kinetics of an isolated RNA tertiary motif, that of the GAAA tetraloop receptor, allowing both solvent and internal frictional contributions to be investigated and extracted independently for both flexible PEG- and RNA-based (rU7, rA7) linkers in the unimolecular construct.
View Article and Find Full Text PDFMany of the unanswered questions associated with hepatitis C virus assembly are related to the core protein (HCVcp), which forms an oligomeric nucleocapsid encompassing the viral genome. The structural properties of HCVcp have been difficult to quantify, at least in part because it is an intrinsically disordered protein. We have used single-molecule Förster Resonance Energy Transfer techniques to study the conformational dimensions and dynamics of the HCVcp nucleocapsid domain (HCVncd) at various stages during the RNA-induced formation of nucleocapsid-like particles.
View Article and Find Full Text PDFSingle-molecule fluorescence microscopy techniques can be used in combination with micrometer length-scale temperature control and Förster resonance energy transfer (FRET) in order to gain detailed information about fundamental biophysical phenomena. In particular, this combination of techniques has helped foster the development of remarkable quantitative tools for studying both time- and temperature-dependent structural kinetics of biopolymers. Over the past decade, multiple research efforts have successfully incorporated precise spatial and temporal control of temperature into single-molecule FRET (smFRET)-based experiments, which have uncovered critical thermodynamic information on a wide range of biological systems such as conformational dynamics of nucleic acids.
View Article and Find Full Text PDFRiboswitches are mRNA elements regulating gene expression in response to direct binding of a metabolite. While these RNAs are increasingly well understood with respect to interactions between receptor domains and their cognate effector molecules, little is known about the specific mechanistic relationship between metabolite binding and gene regulation by the downstream regulatory domain. Using a combination of cell-based, biochemical, and biophysical techniques, we reveal the specific RNA architectural features enabling a cobalamin-dependent hairpin loop docking interaction between receptor and regulatory domains.
View Article and Find Full Text PDFMetabolite-dependent conformational switching in RNA riboswitches is now widely accepted as a critical regulatory mechanism for gene expression in bacterial systems. More recently, similar gene regulation mechanisms have been found to be important for viral systems as well. One of the most abundant and best-studied systems is the tRNA-like structure (TLS) domain, which has been found to occur in many plant viruses spread across numerous genera.
View Article and Find Full Text PDFJ Phys Chem B
March 2015
The influential role of monovalent and divalent metal cations in facilitating conformational transitions in both RNA and DNA has been a target of intense biophysical research efforts. However, organic neutrally charged cosolutes can also significantly alter nucleic acid conformational transitions. For example, highly soluble small molecules such as trimethylamine N-oxide (TMAO) and urea are occasionally utilized by organisms to regulate cellular osmotic pressure.
View Article and Find Full Text PDFRiboswitches represent a family of highly structured regulatory elements found primarily in the leader sequences of bacterial mRNAs. They function as molecular switches capable of altering gene expression; commonly, this occurs via a conformational change in a regulatory element of a riboswitch that results from ligand binding in the aptamer domain. Numerous studies have investigated the ligand binding process, but little is known about the structural changes in the regulatory element.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2014
The effects of "molecular crowding" on elementary biochemical processes due to high solute concentrations are poorly understood and yet clearly essential to the folding of nucleic acids and proteins into correct, native structures. The present work presents, to our knowledge, first results on the single-molecule kinetics of solute molecular crowding, specifically focusing on GAAA tetraloop-receptor folding to isolate a single RNA tertiary interaction using time-correlated single-photon counting and confocal single-molecule FRET microscopy. The impact of crowding by high-molecular-weight polyethylene glycol on the RNA folding thermodynamics is dramatic, with up to ΔΔG° ∼ -2.
View Article and Find Full Text PDF