Publications by authors named "Manfred Heinlein"

The tomato brown rugose fruit virus (ToBRFV) is an emerging pathogen that severely damages the global tomato industry. Topical application of double-stranded RNA (dsRNA) has shown promise as an effective tool to control many pathogens, including viruses. However, it was not yet demonstrated for the control of ToBRFV.

View Article and Find Full Text PDF

BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE 1 (BAK1)-INTERACTING RECEPTOR-LIKE KINASE (BIR) proteins are negative regulators of cell death and defense against microbes in Arabidopsis thaliana. Here, we demonstrate that the members of the BIR family function as negative regulators of antiviral resistance in Arabidopsis. We show that during tobacco rattle virus (TRV) infection, BIR1 and BIR3 gene expression is antagonistically regulated by salicylic acid and jasmonic acid signaling pathways.

View Article and Find Full Text PDF

Plants rely on symplasmic networks of cell-to-cell and long-distance communication through plasmodesmata and phloem to regulate plant development and adaptations to environmental changes. Plasmodesmata facilitate the intercellular transport of metabolites, phytohormones, proteins and RNA molecules, many of which act as signaling molecules. Among these, non-cell-autonomous RNA molecules play a crucial role in coordinating plant development, gene silencing, stress responses, nutrient allocation, as well as in antiviral defense and host-parasite interactions.

View Article and Find Full Text PDF

We developed a formulation of long double-stranded RNA (dsRNA) using interpolyelectrolyte complexes (IPECs) composed of the biopolymers chitosan and alginate, in order to protect the dsRNA from biotic and abiotic factors. Our primary objectives were to enhance stability of dsRNA against environmental nucleases and, secondarily, to mitigate the negative charge of the dsRNA, which may promote foliar uptake. Our approach relies on submicron particles with adjustable surface charge being either positive or negative.

View Article and Find Full Text PDF

In vertebrates and plants, dsRNA plays crucial roles as PAMP and as a mediator of RNAi. How higher fungi respond to dsRNA is not known. We demonstrate that Magnaporthe oryzae (Mo), a globally significant crop pathogen, internalizes dsRNA across a broad size range of 21 to about 3000 bp.

View Article and Find Full Text PDF

Emerging evidence indicates that in addition to its well-recognized functions in antiviral RNA silencing, dsRNA elicits pattern-triggered immunity (PTI), likely contributing to plant resistance against virus infections. However, compared to bacterial and fungal elicitor-mediated PTI, the mode-of-action and signaling pathway of dsRNA-induced defense remain poorly characterized. Here, using multicolor in vivo imaging, analysis of GFP mobility, callose staining, and plasmodesmal marker lines in Arabidopsis thaliana and Nicotiana benthamiana, we show that dsRNA-induced PTI restricts the progression of virus infection by triggering callose deposition at plasmodesmata, thereby likely limiting the macromolecular transport through these cell-to-cell communication channels.

View Article and Find Full Text PDF

Numerous plant endogenous mRNAs move via phloem and thus affect the growth and development of long-distant organs. mRNAs are transported with RNA-binding proteins forming a ribonucleoprotein complex. However, it remains elusive how such RNP complex assembles and facilitates mRNA trafficking.

View Article and Find Full Text PDF

Movement proteins (MPs) of plant viruses enable the translocation of viral genomes from infected to healthy cells through plasmodesmata (PD). The MPs functions involve the increase of the PD permeability and routing of viral genome both to the PD entrance and through the modified PD. encodes two MPs, termed BMB1 and BMB2, which act in concert to accomplish virus cell-to-cell transport.

View Article and Find Full Text PDF

Cells have developed mechanisms for cytoplasmic RNA transport and localization that participate in the regulation and subcellular localization of protein synthesis. In addition, plants can exchange RNA molecules between cells through plasmodesmata and to distant tissues in the phloem. These mechanisms are hijacked by RNA viruses to establish their replication complexes and to disseminate their genomes throughout the plant organism with the help of virus-encoded movement proteins (MP).

View Article and Find Full Text PDF

Plant virus movement proteins (MPs) mediate cell-to-cell movement of the virus genome through plasmodesmata (PD). MPs target PD to increase their size exclusion limit (SEL), and this MP function is essential for virus intercellular trafficking. In this chapter, we describe the use of a Potato virus X genome-derived reporter for agroinfiltration-based identification of virus genome-encoded MPs and analysis of the ability of individual viral MPs or plant proteins to increase the PD SEL.

View Article and Find Full Text PDF

The deposition and turnover of callose (beta-1,3 glucan polymer) in the cell wall surrounding the neck regions of plasmodesmata (PD) controls the cell-to-cell diffusion rate of molecules and, therefore, plays an important role in the regulation of intercellular communication in plants.Here we describe a simple and fast in vivo staining procedure for the imaging and quantification of callose at PD. We also introduce calloseQuant, a plug-in for semiautomated image analysis and non-biased quantification of callose levels at PD using ImageJ.

View Article and Find Full Text PDF

Plasmodesmata (PD) are gated plant cell wall channels that allow the trafficking of molecules between cells and play important roles during plant development and in the orchestration of cellular and systemic signaling responses during interactions of plants with the biotic and abiotic environment. To allow gating, PD are equipped with signaling platforms and enzymes that regulate the size exclusion limit (SEL) of the pore. Plant-interacting microbes and viruses target PD with specific effectors to enhance their virulence and are useful probes to study PD functions.

View Article and Find Full Text PDF

The increasing pace of global warming and climate instability will challenge the management of pests and diseases of cultivated plants. Several reports have shown that increases in environmental temperature can enhance the cell-to-cell and systemic propagation of viruses within their infected hosts. These observations suggest that earlier and longer periods of warmer weather may cause important changes in the interaction between viruses and their host's plants, thus posing risks of new viral diseases and outbreaks in agriculture and the wild.

View Article and Find Full Text PDF

Virus-induced plant diseases in cultivated plants cause important damages in yield. Although the mechanisms of virus infection are intensely studied at the cell biology level, only little is known about the molecular dialog between the invading virus and the host genome. Here we describe a combinatorial genome-wide approach to identify networks of sRNAs-guided post-transcriptional regulation within local Turnip mosaic virus (TuMV) infection sites in Brassica napus leaves.

View Article and Find Full Text PDF

RNA transport and localization represent important post-transcriptional mechanisms to determine the subcellular localization of protein synthesis. Plants have the capacity to transport messenger (m)RNA molecules beyond the cell boundaries through plasmodesmata and over long distances in the phloem. RNA viruses exploit these transport pathways to disseminate their infections and represent important model systems to investigate RNA transport in plants.

View Article and Find Full Text PDF

Plant viruses encode movement proteins (MPs) that ensure the transport of viral genomes through plasmodesmata (PD) and use cell endomembranes, mostly the endoplasmic reticulum (ER), for delivery of viral genomes to PD and formation of PD-anchored virus replication compartments. Here, we demonstrate that the Hibiscus green spot virus BMB2 MP, an integral ER protein, induces constrictions of ER tubules, decreases the mobility of ER luminal content, and exhibits an affinity to highly curved membranes. These properties are similar to those described for reticulons, cellular proteins that induce membrane curvature to shape the ER tubules.

View Article and Find Full Text PDF

RNA transport and localization are evolutionarily conserved processes that allow protein translation to occur at specific subcellular sites and thereby having fundamental roles in the determination of cell fates, embryonic patterning, asymmetric cell division, and cell polarity. In addition to localizing RNA molecules to specific subcellular sites, plants have the ability to exchange RNA molecules between cells through plasmodesmata (PD). Plant RNA viruses hijack the mechanisms of intracellular and intercellular RNA transport to establish localized replication centers within infected cells and then to disseminate their infectious genomes between cells and throughout the plant organism with the help of their movement proteins (MP).

View Article and Find Full Text PDF

Components with self-assembly properties derived from plant viruses provide the opportunity to design biological nanoscaffolds for the ordered display of agents of diverse nature and with complementing functions. With the aim of designing a functionalized nanoscaffold to target cancer, the coat protein (CP) of (TMV) was tested as nanocarrier for an insoluble, highly hydrophobic peptide that targets the transmembrane domain of the Neuropilin-1 (NRP1) receptor in cancer cells. The resulting construct CPL-K (CP-linker-"Kill") binds to NRP1 in cancer cells and disrupts NRP1 complex formation with PlexA1 as well as downstream Akt survival signaling.

View Article and Find Full Text PDF

In plants, transcripts move to distant body parts to potentially act as systemic signals regulating development and growth. Thousands of messenger RNAs (mRNAs) are transported across graft junctions via the phloem to distinct plant parts. Little is known regarding features, structural motifs, and potential base modifications of transported transcripts and how these may affect their mobility.

View Article and Find Full Text PDF

RNA silencing and antiviral pattern-triggered immunity (PTI) both rely on recognition of double-stranded (ds)RNAs as defence-inducing signals. While dsRNA recognition by dicer-like proteins during antiviral RNA silencing is thoroughly investigated, the molecular mechanisms involved in dsRNA perception leading to antiviral PTI are just about to be untangled. Parallels to antimicrobial PTI thereby only partially facilitate our view on antiviral PTI.

View Article and Find Full Text PDF

Plant virus cell-to-cell movement is an essential step in viral infections. This process is facilitated by specific virus-encoded movement proteins (MPs), which manipulate the cell wall channels between neighboring cells known as plasmodesmata (PD). Citrus psorosis virus (CPsV) infection in sweet orange involves the formation of tubule-like structures within PD, suggesting that CPsV belongs to "tubule-forming" viruses that encode MPs able to assemble a hollow tubule extending between cells to allow virus movement.

View Article and Find Full Text PDF

Virus-induced diseases cause severe damage to cultivated plants, resulting in crop losses. Certain plant-virus interactions allow disease recovery at later stages of infection and have the potential to reveal important molecular targets for achieving disease control. Although recovery is known to involve antiviral RNA silencing, the specific components of the many plant RNA silencing pathways required for recovery are not known.

View Article and Find Full Text PDF

Pathogens induce severe damages on cultivated plants and represent a serious threat to global food security. Emerging strategies for crop protection involve the external treatment of plants with double-stranded (ds)RNA to trigger RNA interference. However, applying this technology in greenhouses and fields depends on dsRNA quality, stability and efficient large-scale production.

View Article and Find Full Text PDF

The infection of plants by viruses depends on cellular mechanisms that support the replication of the viral genomes, and the cell-to-cell and systemic movement of the virus via plasmodesmata (PD) and the connected phloem. While the propagation of some viruses requires the conventional endoplasmic reticulum (ER)-Golgi pathway, others replicate and spread between cells in association with the ER and are independent of this pathway. Using selected viruses as examples, this review re-examines the involvement of membranes and the cytoskeleton during virus infection and proposes potential roles of class VIII myosins and membrane-tethering proteins in controlling viral functions at specific ER subdomains, such as cortical microtubule-associated ER sites, ER-plasma membrane contact sites, and PD.

View Article and Find Full Text PDF