Function of Plasmodesmata in the Interaction of Plants with Microbes and Viruses.

Methods Mol Biol

Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.

Published: April 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plasmodesmata (PD) are gated plant cell wall channels that allow the trafficking of molecules between cells and play important roles during plant development and in the orchestration of cellular and systemic signaling responses during interactions of plants with the biotic and abiotic environment. To allow gating, PD are equipped with signaling platforms and enzymes that regulate the size exclusion limit (SEL) of the pore. Plant-interacting microbes and viruses target PD with specific effectors to enhance their virulence and are useful probes to study PD functions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-2132-5_2DOI Listing

Publication Analysis

Top Keywords

microbes viruses
8
function plasmodesmata
4
plasmodesmata interaction
4
interaction plants
4
plants microbes
4
viruses plasmodesmata
4
plasmodesmata gated
4
gated plant
4
plant cell
4
cell wall
4

Similar Publications

Matrix Protein 1 (M1) of Influenza A Virus: Structural and Functional Insights.

Emerg Microbes Infect

September 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.

Enveloped viruses rely on matrix proteins for structural integrity and lifecycle progression. Matrix protein 1 (M1) is the most abundant structural protein of influenza A virus (IAV), playing a multifaceted role in viral uncoating, polymerase activity, vRNA transcription and replication, and assembly and budding. The M1 protein not only interacts with host cells but also regulates viral morphogenesis, thereby influencing viral transmissibility and pathogenicity.

View Article and Find Full Text PDF

Platelet dynamics and thrombocytopenia in dengue fever: A prospective cohort study from Shenzhen, China.

New Microbes New Infect

October 2025

Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.

Introduction: Dengue fever, the most prevalent arthropod-borne viral disease, causes ∼400 million infections annually. Although thrombocytopenia is commonly associated with dengue, how it evolves in relation to viral load and immune responses remains poorly understood. This study aimed to elucidate platelet-virus-immune interactions in acute dengue by systematically tracking of viral load, platelet parameters, and leukocyte dynamics.

View Article and Find Full Text PDF

A metagenomic approach for microbial risk assessment and source attribution in high-risk ports of entry environments.

Biosaf Health

August 2025

NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.

The epidemiological characteristics of emerging infectious disease outbreaks in recent years have underscored the critical importance of controlling imported infectious diseases. In this study, we implemented dynamic tracking of microbial invasions by monitoring environmental microbes at the customs and ports. From July to September 2024, a total of 126 environmental samples were collected from three ports of entry in Shenzhen, China.

View Article and Find Full Text PDF

Heat Stress Drives Rapid Viral and Antiviral Innate Immunity Activation in Hexacorallia.

Mol Ecol

September 2025

Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.

The class Hexacorallia, encompassing stony corals and sea anemones, plays a critical role in marine ecosystems. Coral bleaching, the disruption of the symbiosis between stony corals and zooxanthellate algae, is driven by seawater warming and further exacerbated by pathogenic microbes. However, how pathogens, especially viruses, contribute to accelerated bleaching remains poorly understood.

View Article and Find Full Text PDF

Genomic epidemiology of clade Ia monkeypox viruses circulating in the Central African Republic in 2022-24: a retrospective cross-sectional study.

Lancet Microbe

September 2025

Institut Pasteur de Bangui, Bangui, Central African Republic; Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon. Electronic address:

Background: The spread of monkeypox virus (Orthopoxvirus monkeypox) clade Ib from the Democratic Republic of the Congo to neighbouring countries has raised global concerns, leading to WHO declaring mpox a public health emergency on Aug 14, 2024. We applied genomic epidemiology to investigate the causes of recurrent mpox outbreaks in the Central African Republic. We aimed to determine whether frequent zoonotic spillovers or increased human-to-human transmissions are driving mpox epidemiology.

View Article and Find Full Text PDF