Colorectal cancer (CRC), including both microsatellite instability (MSI) and microsatellite stability (MSS) subtypes, frequently exhibits intrinsic resistance to immunotherapy. However, the spatial tumor microenvironment (TME) and its role in distinguishing immunotherapy responders from non-responders remain poorly understood. In this study, spatial multiomics, including imaging mass cytometry (n = 50 in-house), spatial proteomics (n = 50 in-house), and spatial transcriptomics (n = 9 in-house), were employed to elucidate the spatial TME of metastatic CRC (mCRC) patients receiving immunotherapy.
View Article and Find Full Text PDFPrimary breast cancer (BC) and metastatic tumors exhibit distinct tumor microenvironment (TME) ecosystems, and the heterogeneity of the TME of BC poses challenges to effective therapies. Evaluating the TME at the single-cell and spatial profiles offers potential for more precise treatments. However, due to the challenge of obtaining surgical specimens of both primary BC and oligo-recurrent lung metastasis simultaneously for high-resolution spatial analysis, the TME of lung-specific metastases using paired samples remains largely unexplored.
View Article and Find Full Text PDFBackground And Aims: The prognoses and therapeutic responses of patients with intrahepatic cholangiocarcinoma (iCCA) depend on spatial interactions among tumor microenvironment (TME) components. However, the spatial TME characteristics of iCCA remain poorly understood. The aim of this study was to generate a comprehensive spatial atlas of iCCA using artificial intelligence-assisted spatial multiomics patterns and to identify spatial features associated with prognosis and immunotherapy.
View Article and Find Full Text PDFHeterogeneous organ-specific responses to immunotherapy exist in lung cancer. Dissecting tumor microenvironment (TME) can provide new insights into the mechanisms of divergent responses, the process of which remains poor, partly due to the challenges associated with single-cell profiling using formalin-fixed paraffin-embedded (FFPE) materials. In this study, single-cell nuclei RNA sequencing and imaging mass cytometry (IMC) are used to dissect organ-specific cellular and spatial TME based on FFPE samples from paired primary lung adenocarcinoma (LUAD) and metastases.
View Article and Find Full Text PDFThe heterogeneity of macrophages influences the response to immune checkpoint inhibitor (ICI) therapy. However, few studies explore the impact of APOE macrophages on ICI therapy using single-cell RNA sequencing (scRNA-seq) and machine learning methods. The scRNA-seq and bulk RNA-seq data are Integrated to construct an M.
View Article and Find Full Text PDFDiabetol Metab Syndr
February 2024
Background: The pathophysiological mechanisms of diabetic retinopathy (DR), a blinding disease, are intricate. DR was thought to be a microvascular disease previously. However, growing studies have indicated that the retinal microglia-induced inflammation precedes microangiopathy.
View Article and Find Full Text PDFColorectal melanoma (CRM) is a rare malignant tumor with severe complications, and there is currently a lack of systematic research. We conducted a study that combined proteomics and mutation data of CRM from a cohort of three centers over a 16-years period (2005-2021). The patients were divided into a training set consisting of two centers and a testing set comprising the other center.
View Article and Find Full Text PDFThe retinal neurovascular unit (NVU) is paramount to maintaining the homeostasis of the retina and determines the progression of various diseases, including diabetic retinopathy (DR), glaucoma, and retinopathy of prematurity (ROP). Although some studies have investigated these diseases, a combined analysis of disease-wide etiology in the NUV at the single-cell level is lacking. Herein, we constructed an atlas of the NVU under inflammatory and hypoxic conditions by integrating single-cell transcriptome data from retinas from wild-type, AireKO, and NdpKO mice.
View Article and Find Full Text PDFAs the basic pathological changes of diabetic retinopathy (DR), the destruction of the blood-retina barrier (BRB) and vascular leakage have attracted extensive attention. Without timely intervention, BRB damage will eventually lead to serious visual impairment. However, due to the delicate structure and complex function of the BRB, the mechanism underlying damage to the BRB in DR has not been fully clarified.
View Article and Find Full Text PDFWorld J Stem Cells
November 2022
Corneal stem/progenitor cells are typical adult stem/progenitor cells. The human cornea covers the front of the eyeball, which protects the eye from the outside environment while allowing vision. The location and function demand the cornea to maintain its transparency and to continuously renew its epithelial surface by replacing injured or aged cells through a rapid turnover process in which corneal stem/progenitor cells play an important role.
View Article and Find Full Text PDFOphthalmol Ther
December 2022
Diabetic retinopathy (DR), a blinding disease, is one of the high-incidence chronic complications of diabetes. However, the current treatment for DR is mainly based on advanced pathological changes, which cannot reverse pre-existing retinal tissue damage and visual impairment. Signal transducer and activator of transcription (STAT) proteins are essential in DR through early and late stages.
View Article and Find Full Text PDFFront Immunol
September 2022
Type 2 diabetes mellitus (T2DM) has been confirmed to be closely associated with breast cancer (BC). However, the shared mechanisms between these diseases remain unclear. By comparing different datasets, we identified shared differentially expressed (DE) RNAs in T2DM and BC, including 427 mRNAs and 6 miRNAs from the GEO(Gene Expression Omnibus) database.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID‑19) is an acute infectious pneumonia caused by a novel type of coronavirus infection. There are currently no clinically available specific drugs for the treatment of this virus. The process of host invasion is the key to viral infection, and it is a mechanism that needs to be considered when exploring antiviral drugs.
View Article and Find Full Text PDF