Biochim Biophys Acta Mol Cell Biol Lipids
January 2025
Platelet-activating factor (PAF) is a potent classical lipid mediator that plays a critical role in various diseases such as allergy and nervous system disorders. In the realm of allergy, previous studies suggested that PAF is generated in response to extracellular stimuli and contributes to allergic reactions via PAF receptor (PAFR). However, the sources of endogenous PAF and its pathophysiological dynamics remain largely elusive in vivo.
View Article and Find Full Text PDFAim: Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most prevalent liver diseases and is characterized by steatosis and the accumulation of bioactive lipids. This study aims to understand the specific lipid species responsible for the progression of liver fibrosis in MASH.
Methods: Changes in bioactive lipid levels were examined in the livers of MASH mice fed a choline-deficient diet (CDD).
Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes are interacting comorbidities of obesity, and increased hepatic de novo lipogenesis (DNL), driven by hyperinsulinemia and carbohydrate overload, contributes to their pathogenesis. Fatty acid synthase (FASN), a key enzyme of hepatic DNL, is upregulated in association with insulin resistance. However, the therapeutic potential of targeting FASN in hepatocytes for obesity-associated metabolic diseases is unknown.
View Article and Find Full Text PDFDocosahexaenoic acid (DHA), an omega-3 fatty acid, usually presents as a constituent of phospholipids in the cellular membrane. Lysophospholipid acyltransferase 3 (LPLAT3; AGPAT3) is the primary enzyme that incorporates DHA into phospholipids. LPLAT3-KO mice show male infertility and visual dysfunction accompanied by decreased phospholipids (PLs) containing DHA (PL-DHA) in the testis and retina, respectively.
View Article and Find Full Text PDFLysophosphatidic acid (LPA) is a simple phospholipid consisting of a phosphate group, glycerol moiety, and only one hydrocarbon chain. Despite its simple chemical structure, LPA plays an important role as an essential bioactive signaling molecule via its specific six G protein-coupled receptors, LPA. Recent studies, especially those using genetic tools, have revealed diverse physiological and pathological roles of LPA and LPA receptors in almost every organ system.
View Article and Find Full Text PDFThe G protein-coupled receptors, GPR43 (free fatty acid receptor 2, FFA2) and GPR41 (free fatty acid receptor 3, FFA3), are activated by short-chain fatty acids produced under various conditions, including microbial fermentation of carbohydrates. Previous studies have implicated this receptor energy homeostasis and immune responses as well as in cell growth arrest and apoptosis. Here, we observed the expression of both receptors in human blood cells and a remarkable enhancement in leukemia cell lines (HL-60, U937, and THP-1 cells) during differentiation.
View Article and Find Full Text PDFIn human autosomal recessive woolly hair/hypotrichosis (ARWH/HT), many mutations have been identified in a gene encoding LPA6, a G protein-coupled receptor (GPCR) for lysophosphatidic acid (LPA). However, information regarding the effects of such mutations on receptor function is limited. In this study, we examined functional impacts of selected amino acid changes in LPA6 identified in ARWH/HT patients.
View Article and Find Full Text PDFBitter taste receptors (T2Rs) are G protein-coupled receptors involved in the perception of bitter taste on the tongue. In humans, T2Rs have been found in several sites outside the oral cavity. Although T2R38 has been reported to be expressed on peripheral lymphocytes, it is poorly understood whether T2R38 plays immunological roles in inflammatory skin diseases such as atopic dermatitis (AD).
View Article and Find Full Text PDFThe diversity of glycerophospholipid species in cellular membranes is immense and affects various biological functions. Glycerol-3-phosphate acyltransferases (GPATs) and lysophospholipid acyltransferases (LPLATs), in concert with phospholipase As enzymes, contribute to this diversity via selective esterification of fatty acyl chains at the sn-1 or sn-2 positions of membrane phospholipids. These enzymes are conserved across all kingdoms, and in mammals four GPATs of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family and at least 14 LPLATs, either of the AGPAT or the membrane-bound O-acyltransferase (MBOAT) families, have been identified.
View Article and Find Full Text PDFLysophosphatidic acid (LPA) has major roles as a bioactive signaling molecule, with multiple physiological and pathological roles being described in almost every major organ system. In this review we discuss LPA signaling pathways as emerging drug targets for multiple conditions relevant to human health and disease. LPA signals through the six G protein-coupled receptors LPA, and several of these receptors along with the LPA-producing enzyme including autotaxin (ATX) are now established as therapeutic targets with potential to treat various human diseases as exemplified by several LPA signaling targeting compounds now in clinical trials for idiopathic pulmonary fibrosis and systemic sclerosis.
View Article and Find Full Text PDFPolyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA) and arachidonic acid (ARA), play fundamental roles in mammalian physiology. Although PUFA imbalance causes various disorders, mechanisms of the regulation of their systemic levels are poorly understood. Here, we report that hepatic DHA-containing phospholipids (DHA-PLs) determine the systemic levels of PUFAs through the SREBP1-mediated transcriptional program.
View Article and Find Full Text PDFDuring the growth of lymphatic vessels (lymphangiogenesis), lymphatic endothelial cells (LECs) at the growing front sprout by forming filopodia. Those tip cells are not exposed to circulating lymph, as they are not lumenized. In contrast, LECs that trail the growing front are exposed to shear stress, become quiescent, and remodel into stable vessels.
View Article and Find Full Text PDFTranscriptional mechanisms that drive angiogenesis and organotypic vascular endothelial cell specialization are poorly understood. Here, we show that retinal endothelial sphingosine 1-phosphate receptors (S1PRs), which restrain vascular endothelial growth factor (VEGF)-induced angiogenesis, spatially restrict expression of JunB, a member of the activator protein 1 (AP-1) family of transcription factors (TFs). Mechanistically, VEGF induces JunB expression at the sprouting vascular front while S1PR-dependent vascular endothelial (VE)-cadherin assembly suppresses JunB expression in the nascent vascular network, thus creating a gradient of this TF.
View Article and Find Full Text PDFSphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) activate G protein-coupled receptors (GPCRs) to regulate biological processes. Using a genome-wide CRISPR/dCas9-based GPCR signaling screen, LPAR1 was identified as an inducer of S1PR1/β-arrestin coupling while suppressing Gαi signaling. and -positive lymphatic endothelial cells (LECs) of lymph nodes exhibit constitutive S1PR1/β-arrestin signaling, which was suppressed by LPAR1 antagonism.
View Article and Find Full Text PDFWhite adipose tissue (WAT) can dynamically expand and remodel through adipocyte hypertrophy and hyperplasia. The relative contribution of these 2 mechanisms to WAT expansion is a critical determinant of WAT function and dysfunction in obesity. However, little is known about the signaling systems that determine the mechanisms of WAT expansion.
View Article and Find Full Text PDFLeukotriene B (LTB) receptor type 1 (BLT1) is abundant in phagocytic and immune cells and plays crucial roles in various inflammatory diseases. BLT1 is phosphorylated at several serine and threonine residues upon stimulation with the inflammatory lipid LTB Using Phos-tag gel electrophoresis to separate differentially phosphorylated forms of BLT1, we identified two distinct types of phosphorylation, basal and ligand-induced, in the carboxyl terminus of human BLT1. In the absence of LTB, the basal phosphorylation sites were modified to various degrees, giving rise to many different phosphorylated forms of BLT1.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2018
Cerebral edema is a life-threatening neurological condition characterized by brain swelling due to the accumulation of excess fluid both intracellularly and extracellularly. Fulminant hepatic failure (FHF) develops cerebral edema by disrupting blood-brain barrier (BBB). However, the mechanisms by which mediator induces brain edema in FHF remain to be elucidated.
View Article and Find Full Text PDFLysophosphatidic acid (LPA) and LPA1 receptor signaling play a crucial role in the initiation of peripheral nerve injury-induced neuropathic pain through the alternation of pain-related genes/proteins expression and demyelination. However, LPA and its signaling in the brain are still poorly understood. In the present study, we revealed that the LPA5 receptor expression in corpus callosum elevated after the initiation of demyelination, and the hyperalgesia through Aδ-fibers following cuprizone-induced demyelination was mediated by LPA5 signaling.
View Article and Find Full Text PDFThe molecule 19,20-dihydroxydocosapentaenoic acid, formed by the metabolism of a fatty acid involved in normal brain function, promotes the development of a diabetes-associated form of blindness in a mouse model.
View Article and Find Full Text PDFNat Commun
October 2017
G protein-coupled receptors (GPCRs), a superfamily of cell-surface receptors involved in virtually all physiological processes, are the major target class for approved drugs. Imaging GPCR activation in real time in living animals would provide a powerful way to study their role in biology and disease. Here, we describe a mouse model that enables the bioluminescent detection of GPCR activation in real time by utilizing the clinically important GPCR, sphingosine-1-phosphate receptor 1 (S1P).
View Article and Find Full Text PDFEndothelial dysfunction, a hallmark of vascular disease, is restored by plasma high-density lipoprotein (HDL). However, a generalized increase in HDL abundance is not beneficial, suggesting that specific HDL species mediate protective effects. Apolipoprotein M-containing HDL (ApoMHDL), which carries the bioactive lipid sphingosine 1-phosphate (S1P), promotes endothelial function by activating G protein-coupled S1P receptors.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2017
The vasculature of the central nervous system (CNS) forms a selective barrier termed the blood-brain barrier (BBB). Disruption of the BBB may contribute to various CNS diseases. Conversely, the intact BBB restricts efficient penetration of CNS-targeted drugs.
View Article and Find Full Text PDFAnnu Rev Physiol
February 2017
Vertebrates are endowed with a closed circulatory system, the evolution of which required novel structural and regulatory changes. Furthermore, immune cell trafficking paradigms adapted to the barriers imposed by the closed circulatory system. How did such changes occur mechanistically? We propose that spatial compartmentalization of the lipid mediator sphingosine 1-phosphate (S1P) may be one such mechanism.
View Article and Find Full Text PDFPsoriasis is an inflammatory skin disease with accelerated epidermal cell turnover. Neutrophil accumulation in the skin is one of the histological characteristics of psoriasis. However, the precise mechanism and role of neutrophil infiltration remain largely unknown.
View Article and Find Full Text PDF