Inflammation disrupts endothelial barrier function and causes vascular leak into the tissue parenchyma. Sphingosine 1-phosphate receptor-1 (S1PR1) in endothelial cells (ECs) is a key inducer of endothelial junctions and barrier function. We report here that ECs activation by the cytokine TNFα and TLR3 agonist polyinosine/polycytosine (pI:C) induces the lymphocyte activation molecule CD69 via the canonical NFκB pathway.
View Article and Find Full Text PDFLung vasculature arises from both pulmonary and systemic (bronchial) circulations. Remodeling and structural changes in lung vasculature have been recognized in end-stage fibrotic lung diseases such as idiopathic pulmonary fibrosis (IPF) but have not been well characterized. The vasculature that expands and supplies lung cancers is better described, with the recent recognition that systemic bronchial circulation expands to be the main blood supply to primary lung tumors.
View Article and Find Full Text PDFNeovascular age-related macular degeneration (nAMD) is a major cause of vision loss worldwide. Current standard of care is repetitive intraocular injections of vascular endothelial growth factor (VEGF) inhibitors, although responses may be partial and non-durable. We report that circulating sphingosine 1-phosphate (S1P) carried by apolipoprotein M (ApoM) acts through the endothelial S1P receptor 1 (S1PR1) to suppress choroidal neovascularization (CNV) in mouse laser-induced CNV, modeling nAMD.
View Article and Find Full Text PDFOne hundred and fifty years ago, Johann Thudichum described sphingolipids as unusual "Sphinx-like" lipids from the brain. Today, we know that thousands of sphingolipid molecules mediate many essential functions in embryonic development and normal physiology. In addition, sphingolipid metabolism and signalling pathways are dysregulated in a wide range of pathologies, and therapeutic agents that target sphingolipids are now used to treat several human diseases.
View Article and Find Full Text PDFIn rheumatoid arthritis, inflammatory mediators extravasate from blood into joints via gaps between endothelial cells (ECs), but the contribution of ECs is not known. Sphingosine 1-phosphate receptor 1 (S1PR1), widely expressed on ECs, maintains the vascular barrier. Here, we assessed the contribution of vascular integrity and EC S1PR1 signaling to joint damage in mice exposed to serum-induced arthritis (SIA).
View Article and Find Full Text PDFCanonical Wnt and sphingosine-1-phosphate (S1P) signaling pathways are highly conserved systems that contribute to normal vertebrate development, with key consequences for immune, nervous, and cardiovascular system function; despite these functional overlaps, little is known about Wnt/β-catenin-S1P cross-talk. In the vascular system, both Wnt/β-catenin and S1P signals affect vessel maturation, stability, and barrier function, but information regarding their potential coordination is scant. We report an instance of functional interaction between the two pathways, including evidence that S1P receptor 1 (S1PR1) is a transcriptional target of β-catenin.
View Article and Find Full Text PDFHigh-density lipoprotein (HDL) nanoparticles promote endothelial cell (EC) function and suppress inflammation, but their utility in treating EC dysfunction has not been fully explored. Here, we describe a fusion protein named ApoA1-ApoM (A1M) consisting of apolipoprotein A1 (ApoA1), the principal structural protein of HDL that forms lipid nanoparticles, and ApoM, a chaperone for the bioactive lipid sphingosine 1-phosphate (S1P). A1M forms HDL-like particles, binds to S1P, and is signaling competent.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
February 2024
Respiratory viral infections are frequent causes of acute respiratory distress syndrome (ARDS), a disabling condition with a mortality of up to 46%. The pulmonary endothelium plays an important role in the development of ARDS as well as the pathogenesis of pulmonary fibrosis; however, the therapeutic potential to modulate endothelium-dependent signaling to prevent deleterious consequences has not been well explored. Here, we used a clinically relevant influenza A virus infection model, endothelial cell-specific transgenic gain-of-function and loss-of-function mice as well as pharmacologic approaches and modeling, to define the mechanism by which S1PR1 expression is dampened during influenza virus infection and determine whether therapeutic augmentation of S1PR1 has the potential to reduce long-term postviral fibrotic complications.
View Article and Find Full Text PDFSphingosine-1-phosphate (S1P), the circulating HDL-bound lipid mediator that acts via S1P receptors (S1PR), is required for normal vascular development. The role of this signaling axis in vascular retinopathies is unclear. Here, we show in a mouse model of oxygen-induced retinopathy (OIR) that endothelial overexpression of S1pr1 suppresses while endothelial knockout of S1pr1 worsens neovascular tuft formation.
View Article and Find Full Text PDFSerine palmitoyl transferase (SPT), the rate-limiting enzyme in the de novo synthesis of sphingolipids (SL), is needed for embryonic development, physiological homeostasis, and response to stress. The functions of de novo SL synthesis in vascular endothelial cells (EC), which line the entire circulatory system, are not well understood. Here, we show that the de novo SL synthesis in EC not only regulates vascular development but also maintains circulatory and peripheral organ SL levels.
View Article and Find Full Text PDFCold Spring Harb Perspect Med
January 2023
Extracellular signals act on G-protein-coupled receptors (GPCRs) to regulate homeostasis and adapt to stress. This involves rapid intracellular post-translational responses and long-lasting gene-expression changes that ultimately determine cellular phenotype and fate changes. The lipid mediator sphingosine 1-phosphate (S1P) and its receptors (S1PRs) are examples of well-studied GPCR signaling axis essential for vascular development, homeostasis, and diseases.
View Article and Find Full Text PDFNat Rev Rheumatol
June 2022
Sphingosine 1-phosphate (S1P), which acts via G protein-coupled S1P receptors (S1PRs), is a bioactive lipid essential for vascular integrity and lymphocyte trafficking. The S1P-S1PR signalling axis is a key component of the inflammatory response in autoimmune rheumatic diseases. Several drugs that target S1PRs have been approved for the treatment of multiple sclerosis and inflammatory bowel disease and are under clinical testing for patients with systemic lupus erythematosus (SLE).
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
July 2022
Background: The vascular endothelium maintains tissue-fluid homeostasis by controlling the passage of large molecules and fluid between the blood and interstitial space. The interaction of catenins and the actin cytoskeleton with VE-cadherin (vascular endothelial cadherin) is the primary mechanism for stabilizing AJs (adherens junctions), thereby preventing lung vascular barrier disruption. Members of the Rho (Ras homology) family of GTPases and conventional GEFs (guanine exchange factors) of these GTPases have been demonstrated to play important roles in regulating endothelial permeability.
View Article and Find Full Text PDFBackground: Hemorrhagic shock leads to endothelial glycocalyx shedding, endothelial cellular inflammation, and increased vascular permeability. Early plasma administration improves survival in severely injured patients; this may be due in part to its ability to ameliorate this trauma-induced endotheliopathy. The protective effect of early plasma administration may be due to its sphingosine 1-phosphate content.
View Article and Find Full Text PDFLysophospholipids, exemplified by lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), are produced by the metabolism and perturbation of biological membranes. Both molecules are established extracellular lipid mediators that signal via specific G protein-coupled receptors in vertebrates. This widespread signaling axis regulates the development, physiological functions, and pathological processes of all organ systems.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease which leads to significant morbidity and mortality from respiratory failure. The two drugs currently approved for clinical use slow the rate of decline in lung function but have not been shown to halt disease progression or reverse established fibrosis. Thus, new therapeutic targets are needed.
View Article and Find Full Text PDFBackground Most of the circulating sphingosine-1-phosphate (S1P) is bound to ApoM (apolipoprotein M) of high-density lipoprotein (HDL) and mediates many beneficial effects of HDL on the vasculature via G protein-coupled S1P receptors. HDL-bound S1P is decreased in atherosclerosis, myocardial infarction, and diabetes mellitus. In addition to being the target, the endothelium is a source of S1P, which is transported outside of the cells by Spinster-2, contributing to circulating S1P as well as to local signaling.
View Article and Find Full Text PDFChloride intracellular channels 1 (CLIC1) and 4 (CLIC4) are expressed in endothelial cells and regulate angiogenic behaviors in vitro, and the expression of is important for vascular development and function in mice. Here, we found that CLIC1 and CLIC4 in endothelial cells regulate critical G protein-coupled receptor (GPCR) pathways associated with vascular development and disease. In cultured endothelial cells, we found that CLIC1 and CLIC4 transiently translocated to the plasma membrane in response to sphingosine 1-phosphate (S1P).
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
February 2021
Membrane phospholipid metabolism forms lysophospholipids, which possess unique biochemical and biophysical properties that influence membrane structure and dynamics. However, lysophospholipids also function as ligands for G-protein-coupled receptors that influence embryonic development, postnatal physiology, and disease. The 2 most well-studied species-lysophosphatidic acid and S1P (sphingosine 1-phosphate)-are particularly relevant to vascular development, physiology, and cardiovascular diseases.
View Article and Find Full Text PDF