Publications by authors named "Mari Kono"

Late-onset Tay-Sachs (LOTS) disease is a lysosomal storage disorder most commonly caused by a point mutation (c.805G>A) in the HEXA gene encoding the α subunit of the lysosomal enzyme β-hexosaminidase A. LOTS manifests as a range of gradually worsening neurological symptoms beginning in young adulthood.

View Article and Find Full Text PDF

Cell identity genes that exhibit complex regulation are marked by super-enhancer (SE) architecture. Assessment of SEs in natural killer (NK) cells identified Ugcg, encoding the enzyme responsible for glycosphingolipid (GSL) synthesis. Conditional deletion of Ugcg in early hematopoiesis abrogated NK cell generation while sparing other lineages.

View Article and Find Full Text PDF

Background: Severe dengue has been linked to the presence of atypical lymphocytes, which can be quantified using the Q-flag parameter on a hematology analyzer. A higher atypical lymphocyte count has previously been associated with severe dengue. We aimed to evaluate the feasibility of the atypical lymphocyte score to provide an early prognosis for dengue severity.

View Article and Find Full Text PDF

Sandhoff disease, a lysosomal storage disorder, is caused by pathogenic variants in the HEXB gene, resulting in the loss of β-hexosaminidase activity and accumulation of sphingolipids including GM2 ganglioside. This accumulation occurs primarily in neurons, and leads to progressive neurodegeneration through a largely unknown process. Lysosomal storage diseases often exhibit dysfunctional mTOR signaling, a pathway crucial for proper neuronal development and function.

View Article and Find Full Text PDF

Background: In transfusion-related iron overload, macrophage/reticuloendothelial cells are the first site of haem-derived iron accumulation. The prevention of haem-induced cytotoxicity in macrophages may represent a target for iron overload treatment. Deferasirox, an oral iron chelator, has been used to treat transfusion-related iron overload however, low adherence to the therapy is an issue.

View Article and Find Full Text PDF

Sphingolipids play vital roles in metabolism and regulation. Previously, the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, was reported to directly regulate ceramide synthesis genes by binding to their promoters. Herein, sphingosine kinase 2 (SPHK2), responsible for producing sphingosine-1-phosphate (S1P), was found to interact with AHR through LXXLL motifs, influencing AHR nuclear localization.

View Article and Find Full Text PDF

Background: Cell population data (CPD) parameters related to neutrophils, such as fluorescent light intensity (NE-SFL) and fluorescent light distribution width index (NE-WY), have emerged as potential biomarkers for sepsis. However, the diagnostic implication in acute bacterial infection remains unclear. This study assessed the diagnostic value of NE-WY and NE-SFL for bacteremia in patients with acute bacterial infections, and those associations with other sepsis biomarkers.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes injury to multiple organ systems, including the brain. SARS-CoV-2's neuropathological mechanisms may include systemic inflammation and hypoxia, as well as direct cell damage resulting from viral infections of neurons and glia. How the virus directly causes injury to brain cells, acutely and over the long term, is not well understood.

View Article and Find Full Text PDF

Treatment of monogenic disorders has historically relied on symptomatic management with limited ability to target primary molecular deficits. However, recent advances in gene therapy and related technologies aim to correct these underlying deficiencies, raising the possibility of disease management or even prevention for diseases that can be treated pre-symptomatically. Tay-Sachs disease (TSD) would be one such candidate, however very little is known about the presymptomatic stage of TSD.

View Article and Find Full Text PDF

Eosinophils possess highly electron-dense granules with crystal-like structures and are characterized as high side scatter (SSC) areas by flow cytometry analysis. Eosinophils with low SSC features have been noted in extremely rare cases; however, the underlying cause remains unclear. Eosinophils in the low SSC area were analyzed using microscopy.

View Article and Find Full Text PDF

Inflammation associated with viral infection of the nervous system has been involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD) and multiple sclerosis. Polyinosinic:polycytidylic acid (poly[I:C]) is a Toll-like receptor 3 (TLR3) agonist that mimics the inflammatory response to systemic viral infections. Despite growing recognition of the role of glial cells in AD pathology, their involvement in the accumulation and clearance of amyloid β (Aβ) in the brain of patients with AD is poorly understood.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an inflammatory-demyelinating disease of the central nervous system (CNS) mediated by aberrant auto-reactive immune responses. The current immune-modulatory therapies are unable to protect and repair immune-mediated neural tissue damage. One of the therapeutic targets in MS is the sphingosine-1-phosphate (S1P) pathway which signals via sphingosine-1-phosphate receptors 1-5 (S1P).

View Article and Find Full Text PDF

Periodontal disease is a chronic inflammatory condition caused by periodontal pathogens in the gingival sulcus. Short-chain fatty acids (SCFAs) produced by causal bacteria are closely related to the onset and progression of periodontal disease and have been reported to proliferate in the periodontal sulcus of patients experiencing this pathology. In such patients, propionic acid (C3), butyric acid (C4), isobutyric acid (IC4), valeric acid (C5), isovaleric acid (IC5), and caproic acid (C6), henceforth referred to as [C3-C6], has been reported to have a detrimental effect, while acetic acid (C2) exhibits no detrimental effect.

View Article and Find Full Text PDF
Article Synopsis
  • Sphingosine-1-phosphate (S1P) is an important signaling molecule whose levels influence various cellular activities, but the process for its uptake and recycling in cells isn't fully understood.
  • Researchers utilized a genome-wide CRISPR/Cas9 screen in HeLa cells to uncover genes involved in S1P uptake, focusing on genes necessary for recycling its sphingoid base to produce a specific glycosphingolipid (Gb3).
  • The study identified key genes, including lipid phosphatases PLPP3 and SGPP1, that help convert extracellular S1P to sphingosine for further processing, highlighting a pathway crucial for maintaining S1P levels and its roles in complex sphingolipid synthesis.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effects of haemin and non-transferrin-bound iron (NTBI) on cell death in monocytes/macrophages, focusing on the differences in iron accumulation and its consequences.
  • The results show that haemin treatment led to increased intracellular labile iron pool (LIP) and significant cell death, while NTBI treatments (FAC and FAS) did not produce the same effects.
  • The findings suggest that combining iron chelators with antioxidants may help manage iron overload-related cell damage.
View Article and Find Full Text PDF

Objectives: Progression of dengue is often associated with thrombocytopenia resulting from viral-induced bone marrow suppression and immune-mediated peripheral platelet consumption. Immature platelet fraction (IPF), which can be measured using a haematology analyser, is a precursor indicating platelet formation in the bone marrow. This study evaluated the trend of IPF as an early recovery indicator of platelets in dengue patients with thrombocytopenia, and its relationship with severe dengue in conjunction with reticulocyte count.

View Article and Find Full Text PDF

Rationale: Cerebrovascular function is critical for brain health, and endogenous vascular protective pathways may provide therapeutic targets for neurological disorders. S1P (Sphingosine 1-phosphate) signaling coordinates vascular functions in other organs, and S1P (S1P receptor-1) modulators including fingolimod show promise for the treatment of ischemic and hemorrhagic stroke. However, S1P also coordinates lymphocyte trafficking, and lymphocytes are currently viewed as the principal therapeutic target for S1P modulation in stroke.

View Article and Find Full Text PDF

Sphingolipids, which function as plasma membrane lipids and signaling molecules, are highly enriched in neuronal and myelin membranes in the nervous system. They are degraded in lysosomes by a defined sequence of enzymatic steps. In the related group of disorders, the sphingolipidoses, mutations in the genes that encode the individual degradative enzymes cause lysosomal accumulation of sphingolipids and often result in severe neurodegenerative disease.

View Article and Find Full Text PDF

Objective: Reactive oxygen species (ROS) production by neutrophils induces pulmonary endothelial cell damage and results in acute lung injury (ALI). We previously reported that deferasirox (DFS), an iron-chelating agent, inhibits the ROS production and neutrophil extracellular trap (NET) formation induced by phorbol myristate acetate and formylmethionylleucylphenylalanine . In the present study, we investigated the effects of DFS using a mouse model of lipopolysaccharide (LPS)-induced ALI.

View Article and Find Full Text PDF

Despite the medical importance of G protein-coupled receptors (GPCRs), in vivo cellular heterogeneity of GPCR signaling and downstream transcriptional responses are not understood. We report the comprehensive characterization of transcriptomes (bulk and single-cell) and chromatin domains regulated by sphingosine 1-phosphate receptor-1 (S1PR1) in adult mouse aortic endothelial cells. First, S1PR1 regulates NFκB and nuclear glucocorticoid receptor pathways to suppress inflammation-related mRNAs.

View Article and Find Full Text PDF

Sphingolipid biosynthesis generates lipids for membranes and signaling that are crucial for many developmental and physiological processes. In some cases, large amounts of specific sphingolipids must be synthesized for specialized physiological functions, such as during axon myelination. How sphingolipid synthesis is regulated to fulfill these physiological requirements is not known.

View Article and Find Full Text PDF

Sphingolipids are membrane and bioactive lipids that are required for many aspects of normal mammalian development and physiology. However, the importance of the regulatory mechanisms that control sphingolipid levels in these processes is not well understood. The mammalian ORMDL proteins (ORMDL1, 2 and 3) mediate feedback inhibition of the de novo synthesis pathway of sphingolipids by inhibiting serine palmitoyl transferase in response to elevated ceramide levels.

View Article and Find Full Text PDF

Background: Iron overload is a major health concern for transfusion-dependent patients. Repeated transfusions result in the loading of large amounts of haem-derived iron on macrophages, in turn, inducing cell death. We previously demonstrated that haemin-induced cell death in human monocytic THP-1 cells is consistent with ferroptosis, an iron-dependent cell death regulation mechanism.

View Article and Find Full Text PDF

Background In a generalist laboratory, the integration of the data obtained from hematology analyzers (HAs) with those from multiparametric flow cytometry (FMC) could increase the specificity and sensitivity of first level screening to identify the pathological samples. The aim of this study was to perform a preliminary evaluation of a new simple hybrid method (HM). The method was obtained by integration between HAs reagents into FCM, with a basic monoclonal antibodies panel for the leukocytes differential count.

View Article and Find Full Text PDF

The bioactive lipid mediator sphingosine 1-phosphate (S1P) was recently assigned critical roles in platelet biology: whereas S1P receptor-mediated S1P gradient sensing was reported to be essential for directing proplatelet extensions from megakaryocytes (MKs) toward bone marrow sinusoids, MK sphingosine kinase 2 (Sphk2)-derived S1P was reported to further promote platelet shedding through receptor-independent intracellular actions, and platelet aggregation through S1P Yet clinical use of S1P pathway modulators including fingolimod has not been associated with risk of bleeding or thrombosis. We therefore revisited the role of S1P in platelet biology in mice. Surprisingly, no reduction in platelet counts was observed when the vascular S1P gradient was ablated by impairing S1P provision to plasma or S1P degradation in interstitial fluids, nor when gradient sensing was impaired by deletion selectively in MKs.

View Article and Find Full Text PDF