Genetic defects in the sphingolipid degradation pathway and their effects on microglia in neurodegenerative disease.

Cell Signal

Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

Published: February 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sphingolipids, which function as plasma membrane lipids and signaling molecules, are highly enriched in neuronal and myelin membranes in the nervous system. They are degraded in lysosomes by a defined sequence of enzymatic steps. In the related group of disorders, the sphingolipidoses, mutations in the genes that encode the individual degradative enzymes cause lysosomal accumulation of sphingolipids and often result in severe neurodegenerative disease. Here we review the information indicating that microglia, which actively clear sphingolipid-rich membranes in the brain during development and homeostasis, are directly affected by these mutations and promote neurodegeneration in the sphingolipidoses. We also identify parallels between the sphingolipidoses and more common forms of neurodegeneration, which both exhibit evidence of defective sphingolipid clearance in the nervous system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7775721PMC
http://dx.doi.org/10.1016/j.cellsig.2020.109879DOI Listing

Publication Analysis

Top Keywords

neurodegenerative disease
8
nervous system
8
genetic defects
4
defects sphingolipid
4
sphingolipid degradation
4
degradation pathway
4
pathway effects
4
effects microglia
4
microglia neurodegenerative
4
disease sphingolipids
4

Similar Publications

Parkinson's disease (PD) is the fastest-growing neurodegenerative disease in the world and appears to be an emerging epidemic in Africa, where counteractive measures have become necessary. Previous reports have highlighted the limited epidemiological and clinical PD research in Africa but overlooked the poor preclinical PD research output of the continent. Because preclinical research is a bedrock for translating basic scientific research into clinical practice, a weak preclinical research foundation can hamper advancement in epidemiological and clinical investigations.

View Article and Find Full Text PDF

Neurodegenerative disorders (NDD) i.e., dementia of the Alzheimer's type, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are a rising worldwide epidemic driven by aging populations and characterized by progressive neuronal impairment.

View Article and Find Full Text PDF

Background: The Neria™ Guard infusion set is indicated for the infusion of several medications for Parkinson's and pain-management therapy.

Aim: The aim of this study was to explore the impact of the Neria Guard infusion set on patients and health professionals from the perspective of nurses.

Method: Two surveys were distributed to nurses: one targeting nurses who use Neria Guard for Parkinson's patients, and one for those who use it for palliative care patients.

View Article and Find Full Text PDF

Peripheral Inflammation Is Associated With Greater Neuronal Injury and Lower Episodic Memory Among Late Middle-Aged Adults.

J Neurochem

September 2025

Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Elucidating the earliest biological mechanisms underlying Alzheimer's disease (AD) is critical for advancing early detection strategies. While amyloid-β (Aβ) and tau pathologies have been central to preclinical AD research, the roles of peripheral biological processes in disease initiation remain underexplored. We investigated patterns of F-MK6240 tau positron emission tomography (PET) and peripheral inflammation across stages defined by Aβ burden and neuronal injury in n = 132 (64.

View Article and Find Full Text PDF

Antibody Therapies for Alzheimer's Disease: A New Strategy for Targeted Therapy and Blood-Brain Barrier Delivery.

ACS Chem Neurosci

September 2025

Institute of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21215, United States.

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive impairment and neuronal loss, with pathological hallmarks including Aβ plaque deposition and tau tangles. At present, the early diagnosis and treatment of AD still face great challenges, such as limited diagnostic methods, difficulty in blood-brain barrier (BBB) penetration, complex disease mechanisms, and lack of highly effective targeted therapies. Antibody drugs have shown broad prospects in the field of AD due to their high specificity, engineering and multifunctional therapeutic potential, include targeted Aβ clearance, tau pathological regulation, imaging probes, and blood biomarkers.

View Article and Find Full Text PDF