Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neurodegenerative disorders (NDD) i.e., dementia of the Alzheimer's type, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are a rising worldwide epidemic driven by aging populations and characterized by progressive neuronal impairment. In the face of symptomatic therapies, disease-modifying treatments are beyond reach, for many years, at least, owing to the multifactorial origin, including protein aggregation, oxidative stress, neuroinflammation, and neurotransmitter dysregulation. Here, we point out thiophene, a five-membered heterocyclic sulfur-containing scaffold, as an underinvestigated but highly versatile pharmacophore with great potential in therapeutics of NDD. Here, we provide a systematic review of thiophene derivatives identified between 2006 and 2024, highlighting that these compounds are capable of modulating the aggregation of amyloid-β, inhibiting acetylcholinesterase, alleviating oxidative stress, inhibiting the toxicity of α-synuclein, and restoring neurotransmitter homeostasis. Specific emphasis is placed on their structural malleability, blood-brain barrier penetrability, and multi-targeting, which collectively present advantages over traditional heterocyclic templates. Progress in the areas of structure-activity relationship (SAR)-motivated design, synthetic methods, molecular docking, and preclinical assessment is reviewed, leading to the establishment of lead thiophene scaffolds with micro or nanomolar-range activity. This review also provides future directions, such as the requirement of pharmacokinetic improvement, target verification, and translational research to bridge preclinical discoveries with clinical utility. This article collectively places thiophene derivatives as an innovative chemical platform for the design of next-generation drugs for neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408347.2025.2554239DOI Listing

Publication Analysis

Top Keywords

neurodegenerative disorders
8
oxidative stress
8
thiophene derivatives
8
exploring thiophene-based
4
thiophene-based pharmacophores
4
pharmacophores emerging
4
emerging therapeutics
4
therapeutics neurodegenerative
4
disorders neurodegenerative
4
disorders ndd
4

Similar Publications

Long-Term Open-Label Study Evaluating Oral Miglustat Treatment in Patients With Neuronal Ceroid Lipofuscinosis Type 3.

Neurology

October 2025

Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies - EpiCARE, Rome, Italy.

Objectives: Neuronal ceroid lipofuscinosis type 3 (CLN3) is a rare lysosomal storage disorder characterized by progressive neurodegeneration. No disease-modifying treatments are currently available. Miglustat, a substrate reduction therapy, has shown preclinical efficacy in CLN3 models (conference abstract).

View Article and Find Full Text PDF

ε4 on immunity.

Sci Signal

September 2025

Science Signaling, AAAS, Washington, DC 20005, USA. Email:

ε4 dysregulates systemic immunity, creating vulnerability for neurodegenerative disease.

View Article and Find Full Text PDF

Background: Stroke is a leading cause of death and disability globally, with frequent cognitive sequelae affecting up to 60% of stroke survivors. Despite the high prevalence of post-stroke cognitive impairment (PSCI), early detection remains underemphasized in clinical practice, with limited focus on broader neuropsychological and affective symptoms. Stroke elevates dementia risk and may act as a trigger for progressive neurodegenerative diseases.

View Article and Find Full Text PDF

As plasma biomarkers like p-tau217 move towards clinical use in Alzheimer's disease (AD), it is important to understand how kidney function may influence their accuracy. Even mild chronic kidney disease (CKD) can alter biomarker levels, potentially impacting test performance. While accounting for renal function may improve specificity, it could reduce sensitivity without greatly changing overall diagnostic accuracy.

View Article and Find Full Text PDF

BackgroundGlaucoma is recognized as the second-leading cause of complete blindness in developed countries and a significant contributor to irreversible vision loss worldwide. Understanding the potential genetic links between neurodegenerative diseases, such as Parkinson's disease, and glaucoma is crucial for developing preventive strategies.MethodsThis study utilized data from Genome-Wide Association Studies databases, focusing on European populations without gender restrictions.

View Article and Find Full Text PDF